
Rekindling Network Protocol Innovation with User-Level
Stacks

Michio Honda∗, Felipe Huici∗, Costin Raiciu†, Joao Araujo‡, Luigi Rizzo§‖

NEC Europe Ltd.∗, Universitatea Politehnica Bucuresti†, University College London‡, Università di Pisa§,
International Computer Science Institute, Berkeley, CA‖

{first.last}@neclab.eu, costin.raiciu@cs.pub.ro, j.araujo@ucl.ac.uk, rizzo@iet.unipi.it

ABSTRACT
Recent studies show that more than 86% of Internet paths
allow well-designed TCP extensions, meaning that it is still
possible to deploy transport layer improvements despite the
existence of middleboxes in the network. Hence, the blame
for the slow evolution of protocols (with extensions taking
many years to become widely used) should be placed on end
systems.

In this paper, we revisit the case for moving protocols
stacks up into user space in order to ease the deployment
of new protocols, extensions, or performance optimizations.
We present MultiStack, operating system support for user-
level protocol stacks. MultiStack runs within commodity
operating systems, can concurrently host a large number of
isolated stacks, has a fall-back path to the legacy host stack,
and is able to process packets at rates of 10Gb/s.

We validate our design by showing that our mux/de-
mux layer can validate and switch packets at line rate (up
to 14.88 Mpps) on a 10 Gbit port using 1-2 cores, and
that a proof-of-concept HTTP server running over a basic
userspace TCP outperforms by 18–90% both the same server
and nginx running over the kernel’s stack.

Categories and Subject Descriptors
C.2.2 [Computer-communication Networks]: Network
Protocols; D.4.4 [Operating Systems]: Communications
Management

Keywords
transport protocols, operating systems, deployability

1. INTRODUCTION
The TCP/IP protocol suite has been mostly implemented

in the operating system kernel since the inception of UNIX
to ensure performance, security and isolation between user
processes. Over time, new protocols and features have ap-
peared (e.g., SCTP, DCCP, MPTCP, improved versions of
TCP), many of which have become part of mainstream OSes
and distributions. Fortunately, the Internet is still able to
accommodate the evolution of protocols: a recent study [10]
has shown that as many as 86% of Internet paths still allow
TCP extensions despite the existence of a large number of
middleboxes.

However, the availability of a feature does not imply wide-
spread, timely deployment. Being part of the kernel, new
protocols/extensions have system-wide impact, and are typ-
ically enabled or installed during OS upgrades. These hap-

0.00

0.25

0.50

0.75

1.00

2007 2008 2009 2010 2011 2012
Date

R
at

io
 o

f f
lo

w
s

Option

SACK

Timestamp

Windowscale

Direction

Inbound

Outbound

Figure 1: TCP options deployment over time.

pen infrequently not only because of slow release cycles, but
also due to their cost and potential disruption to existing
setups. If protocol stacks were embedded into applications,
they could be updated on a case-by-case basis, and deploy-
ment would be a lot more timely.

For example, Mac OS, Windows XP and FreeBSD still
use a traditional Additive Increase Multiplicative Decrease
(AIMD) algorithm for TCP congestion control, while Linux
and Windows Vista (and later) use newer algorithms that
achieve better bandwidth utilization and mitigate RTT un-
fairness [21, 25]. From a user’s point of view there is no
reason not to adopt such new algorithms, but they do not
because it can only be done via OS upgrades that are often
costly or unavailable. Even if they are available, OS default
settings that disable such extensions or modifications can
further hinder timely deployment.

Figure 1 shows another example, the usage of the
three most pervasive TCP extensions: Window Scale
(WS) [12], Timestamps (TS) [12] and Selective Acknowledg-
ment (SACK) [16]∗. For example, despite WS and TS being
available since Windows 2000 and on by default since Win-
dows Vista in 2006, as late as 2012 more than 30% and 70%
of flows still did not negotiate these options (respectively),
showing that it can take a long time to actually upgrade or
change OSes and thus the network stacks in their kernels.
We see wider deployment for SACK in 2007 (70%) compared
to the other options thanks to it being on by default since
Windows 2000, but even with this, 20% of flows still did
not use this option as late as 2011. The argument remains
∗We used a set of daily traces from the WIDE backbone
network which provides connectivity to universities and re-
search institutes in Japan [3].

ACM SIGCOMM Computer Communication Review 53 Volume 44, Number 2, April 2014

unchanged for the Linux kernel, which had SACK and TS
on by default since 1999 and WS since 2004.

These are not problems of the past. Something similar
will happen in the future with FastOpen [19], which per-
mits the exchange of data in SYN packets. Likewise for
Multipath TCP [20], which can improve overall throughput
by distributing packets over distinct end-to-end paths [28].
Besides slow deployment, other problems with in-kernel pro-
tocol stacks include difficulty of development and low porta-
bility, which also hamper maintenance and code reuse.

Moving all transport layer functionality to user-space on
top of in-kernel UDP as in QUIC [27] is not a panacea:
the widespread adoption of middleboxes in today’s networks
means that UDP does not always get through certain paths
and that even TCP often struggles [10], making the ability to
easily modify TCP, and more generally the transport layer,
paramount.

To tackle these issues, we argue for moving network pro-
tocol stacks up to user-space in order to accelerate innova-
tion and feature deployment. User-level protocol stacks have
been proposed several times in the 90’s with different goals,
including exploring (micro)kernel architectures [15], perfor-
mance enhancements [26, 5], and better integration between
protocol and application (Exokernel [7]). These works pro-
vided some important system design ideas, but have seen no
real world usage because of lack of an incremental deploy-
ment path to replace legacy stacks and applications, and no
support in commodity operating systems.

Instead, in this work we intentionally target commodity
operating systems (Linux and FreeBSD) running on produc-
tion systems, and provide support for legacy stacks along-
side user-level ones. This architecture requires that (1) the
namespace management system (address, protocol and port)
be shared between the legacy stack and user-space stack(s),
and that (2) packet I/O between the NIC and each of these
stacks be isolated.

These mechanisms seem to impose significant overhead.
For instance, [2] reports that mediating packets for a similar
purpose with a conventional packet filter degrades perfor-
mance by as much as four times. Application developers
are likely to adopt user-level stacks in order to leverage new
features, but not if such adoption would result in poor per-
formance. Thankfully, recent research in the area of fast
packet I/O mechanisms [22, 6] on commodity hardware and
operating systems makes us think that the time is ripe to
make deployable, efficient user-level stacks a reality.

In this paper we introduce MultiStack, an architecture
that provides operating system support for fast, user-space
stacks. MultiStack builds on, and extends, two compo-
nents: the netmap [22] framework and the VALE software
switch [23] †. It combines several features that we consider
essential to make it an effective and practical system: i) sup-
port for multiple independent stacks, so that applications
can be upgraded independently; ii) in-kernel mux/demux,
allowing centralized control and filtering of traffic; iii) ex-
tremely high performance; and iv) a fall-back path to the
in-kernel network stack to support the coexistence of legacy
applications and novel ones. MultiStack provides the traffic
isolation needed to support user-level stacks without hav-
ing to incur the costs associated with virtualization or more

†Another option would have been to use Intel DPDK’s
vSwitch [11], but this software cannot be used in conjunction
with the host stack.

A
S

A

A
S

(u1) (u2)

(k1) (k2) (k3)

user
kernel

A
S

A: Application
S: Stack

: Packet buffer

: Thread

NIC
Mux/Demux

Mux/Demux

Figure 2: Options for user-space stacks (u1, u2), and
network I/O (k1, k2, k3). Useful combinations are
u1+k1, u2+k2 or u2+k3, the latter being our choice
for MultiStack.

lightweight container technologies [18].
Our tests show that MultiStack can demux/switch pack-

ets at line rate on 10 Gbit/s at all packet sizes, and an
HTTP+TCP implementation running on top of MultiStack
outperforms both nginx and the same HTTP server running
on the host TCP stack by 18–90% depending on request size.

2. DESIGN SPACE
Making multiple applications share the single I/O chan-

nel provided by the system requires managing access to the
namespace (addresses, protocols and ports), preserving iso-
lation among applications, and implementing demultiplex-
ing of traffic with adequate speed. Here we explore these is-
sues and the design space with respect to high performance
user-level stacks.

2.1 Shared versus Dedicated Stacks
The literature has presented two models of how a user-

space stack would talk to applications and the kernel: shared
and dedicated stacks. In the first model (u1 in Figure 2) the
protocol stack is a process shared by a set of applications,
as in [14]. While it works well for in-kernel stacks, apply-
ing this model to userspace introduces redundant context
switches, message copies and process’ hand-offs that affect
both throughput and latency and are unacceptable at high
data rates.

A shared stack is also problematic when it comes to re-
source allocation, as it makes it hard to charge network pro-
cessing costs to the process that makes use of the stack [4].
While today’s major operating systems do not charge all the
network processing costs to the proper application (e.g., in-
terrupt costs are not charged, for one), proper accounting
will become crucial in the near future to ensure fairness be-
tween applications using higher available networking speeds
and incurring the larger packets processing costs of newer
TCP extensions (e.g., MPTCP to cope with middleboxes
and heavy packet reordering [20] and TcpCrypt [2] to per-
form cryptographic operations).

The second model bundles each application with a ded-
icated stack within the same process’ context (u2 in Fig-
ure 2). This removes many of the sources of overhead of
a shared stack, and possibly enables some performance op-
timizations, such as improved data locality and integrated
processing between the protocol and the application. Addi-
tional advantages of this model are that individual protocol
stacks can be different and tailored to the specific require-
ments of the application, and that they can be easily up-

ACM SIGCOMM Computer Communication Review 54 Volume 44, Number 2, April 2014

dated together with the application themselves.
Dedicated stacks are therefore preferable, and we adopt

them in MultiStack. However, using multiple dedicated
stacks requires isolation of packet buffers, because each stack
independently accesses the device driver and NIC; we de-
scribe how we address this problem next.

2.2 Sharing the Network Interface
With dedicated stacks, sharing a NIC (and its queues and

packet buffers) between multiple user-level stacks can be
done with hardware support (k2 in Figure 2), or through
a software multiplex/demultiplex module in the kernel (k3
in Figure 2). The former is adopted by Solarflare [24] and
U-Net [5], and the latter is adopted by Exokernel [7].

Some modern NICs can indeed expose multiple trans-
mit/receive queues (and corresponding packet buffers) to the
device driver, and this feature can be used to assign queues
to the individual user-level stacks. Standard memory pro-
tection mechanisms, or copies in the user-kernel transitions,
avoid that processes access each other’s traffic.

Demultiplexing is however challenging, as the require-
ments (by MAC address, IP address, 3- or 5- tuple) vary,
and the hardware required to support this operation (CAM)
is expensive. For this reason NICs often provide only a
very small number of exact filters, which can match specific
header fields and dispatch traffic accordingly ‡. Overall, we
do not consider hardware-supported mux/demux to be vi-
able: it depends on specific hardware features that are not
always present, and it has severe scalability issues due to the
small number of queues and exact filters available.

The model in k3 is better suited for user-level stacks.
However, since this approach imposes software-based demux
filtering as well as packet copies between NIC and applica-
tion packet buffers, one obvious question arises: is it possi-
ble to achieve good performance? Fortunately, the answer
is positive, and so MultiStack adopts this approach. As we
will show in Section 4, MultiStack achieves 60% of 10Gb/s
line rate using a single CPU core, and 100% using two CPU
cores even for minimum-sized packets.

2.3 Namespace Sharing
Namespace Sharing refers to the ability for stacks to

share the IP addresses assigned to the NICs while avoiding
clashes and information leak. Namespace sharing is achieved
in today’s stacks by having applications use the bind call
which specifies the protocol, IP address(es) and port num-
ber. These three-tuples are used to dispatch incoming traffic
(e.g., TCP SYN packets) to the right process.

To support multiple stacks, we use a namespace sharing
module in the kernel for the same purpose (named Mux/De-
mux in Figure 2 (k3)). User-level stacks register the desired
3-tuples by executing the equivalent of the bind syscall on
the namespace sharing module. The 3-tuples are used to de-
multiplex incoming data, and also serve to validate outgoing
traffic for each application/stack instance.

2.4 Support for Legacy Stacks/Applications
Support for incremental and partial deployment is a fun-

damental prerequisite to achieve speedier protocol innova-

‡NICs also support dispatching based on a hash of selected
header fields, but this mechanism is designed to help load
distribution on multi-core machines and is not suitable for
our purposes.

App 1

Stack 1

MultiStackNIC

Netmap API

Multiplex / Demultiplex packets

Kernel

Userlegacy apps

OS's stack

Virtual ports

App N

Stack N
Socket API

. . .

. . .

Figure 3: MultiStack software architecture.

tion. This seems to be one of the reasons why previous pro-
posals of this type, although extremely interesting in terms
of architecture or performance, have not been deployed.

In MultiStack, dedicated user-space stacks run in parallel
with the regular host stack, ensuring support for unmodi-
fied legacy applications. To allow coexistence, we need to
ensure that the kernel mechanism that handles namespace
isolation is aware of which packets to deliver to the regular
host stack and which to user-level ones, and to prevent port
and protocol clashes between these.

Avoiding clashes requires interaction with the host stack
to find out which ports are already reserved. Such infor-
mation can be trivially achieved by modifying host stacks,
but the changes are cumbersome. Fortunately, this informa-
tion can also be obtained without modifying host stacks by
either calling the socket lookup routine for receiving pack-
ets, or checking the table of file descriptors that the current
process is opening, depending on the OS’s implementation.

3. IMPLEMENTATION
We have explored the design space for user-space stack

support and arrived at a set of design choices: (1) support
for a large number of dedicated stacks (one per network
application), (2) per stack, isolated access to the NIC, (3)
3-tuple namespace isolation, and (4) support for legacy (in-
kernel) stacks and applications.

As it turns out, close inspection reveals that most of these
requirements point to a high-speed software switching archi-
tecture, where the switch’s ports are used to provide isolated
access to user-level stacks, the host stack, and the actual
NICs; the actual switching logic would be based on three-
tuple namespace identifiers (Figure 3).

Software switches are certainly not new, and so our first
task is to see if we can take an existing one as the basis
for MultiStack. To take advantage of a fast data path, we
decided to base the implementation of MultiStack on VALE,
a high performance software learning bridge [23], and extend
it in a number of ways in order to implement our design
choices. First, VALE only supports virtual ports (i.e., ports
to which we would attach user-level stacks), so we add the
ability to connect NICs directly to the switch. Second, we
extend its functionality so that it is possible to send a subset
of packets to the host stack.

Next, we replace the learning bridge logic with one that
uses 3-tuples. A hash table stores three-tuple identifiers
registered by the user-level stacks and is used to dispatch
packets coming from the NIC. Traffic not claimed by any of
the applications goes to the OS stack. Hash table lookup

ACM SIGCOMM Computer Communication Review 55 Volume 44, Number 2, April 2014

 0

 2

 4

 6

 8

 10

64 128 256 512T
h

ro
u
g
h

p
u
t

(G
b
p

s)

Packet size (bytes)

1 core
2 cores
4 cores

Line rate

(a) Tx, variable cores

 0

 2

 4

 6

 8

 10

64 128 256 512T
h

ro
u
g
h

p
u
t

(G
b
p

s)

Packet size (bytes)

1 core
2 cores
4 cores

Line rate

(b) Rx, variable cores

 0

 2

 4

 6

 8

 10

64 128 256 512T
h

ro
u
g
h

p
u
t

(G
b
p

s)

Packet size (bytes)

8 ports
16 ports
64 ports

Line rate

(c) Tx, variable ports

 0

 2

 4

 6

 8

 10

64 128 256 512T
h

ro
u
g
h

p
u
t

(G
b
p

s)

Packet size (bytes)

8 ports
16 ports
64 ports

Line rate

(d) Rx, variable ports

Figure 4: MultiStack Tx/Rx performance on a 10 Gbit NIC, for variable number of cores and active switch
ports. Line rate (which depends on the packet size) is achieved for all packet sizes with just 1 or at most 2
cores. Throughput is essentially unaffected even with a large number of ports sending/receiving traffic.

only applies to incoming packets; outgoing ones are just val-
idated so that their 3-tuple (source IP, port and protocol
type) matches what the stack had previously registered with
MultiStack. This module also implements the registration
mechanism described in Section 2.4.

In addition, we implement support for multiple packet
rings per port, each of which can be assigned to a different
thread and thus a CPU core. This extension significantly
contributes to performance, as we show in the next section.

We also implement a new packet forwarding algorithm
that allows us to scale to larger number of switch ports,
from 64 in the original VALE to 254 in MultiStack, and
further if needed. The default VALE switching algorithm is
optimized for multicast traffic, but this leads to a forwarding
complexity that is linear in the number of connected ports
(even for unicast traffic and in the presence of idle ports). To
reduce this complexity, we only allow unicast or broadcast
packets (multicast is mapped to broadcast). This allows us
to implement packet forwarding by only scanning two lists
(one for the current port, one for broadcast), which makes
this a constant time step, irrespective of the number of ports.
This greater port density is important if we hope to support
many concurrent user-level stacks/applications.

Our implementation of MultiStack runs in both Linux and
FreeBSD.

4. EVALUATION OF MULTISTACK
In this section we benchmark MultiStack’s Tx and Rx

throughput performance. The experiments are conducted
between a MultiStack machine and an external machine
connected via a direct cable through a 10 Gbit NIC. The
MultiStack machine has an Intel Core i7 CPU (3.2 GHz, 6
cores, 12 with Hyper-Threading), 8 GB RAM, and an Intel
82599EB 10 Gbit/s NIC, and runs MultiStack/FreeBSD 10.
The external machine has an Intel Core i7 CPU (3.4 Ghz, 4

cores), 4 GB RAM, and the same NIC and OS.
The MultiStack ports are connected to either a custom

packet counter (Rx), or to a generator (Tx). The packet gen-
erator is multi-threaded and emulates TCP’s basic behavior,
building each packet from scratch, incrementing its sequence
number, and calculating a checksum for it. The complemen-
tary program (Tx or Rx, respectively) runs on the remote
machine, this time using the netmap API directly on the
NIC. We should note that the switching code in MultiStack
also performs basic IP header validation (header length, pro-
tocol type, IP checksum). While not strictly necessary, it
gives us a more conservative estimate of the throughput.

The first two tests measure the Tx (Figure 4(a)) and Rx
(4(b)) throughput when only one MultiStack port is in use
(each port supports multiple Tx/Rx queues, so we can use
multiple cores in the sender and the receiver if needed). One
core is sufficient to saturate the link for all but the smallest
packet sizes, and two are sufficient in all cases. These num-
bers are slightly worse than those of the individual netmap
and VALE components on the same hardware, but we should
remember that here we have a lot more processing in the
sender, switch and receiver.

The next set of experiments (Figure 4(c) and 4(d)) mea-
sures the Tx and Rx throughput with multiple active Mul-
tiStack ports. Each sender or receiver connects to a Multi-
Stack port using a single thread, and we let the OS handle
CPU assignment (which is suboptimal, but again should give
conservative numbers). In the Tx experiments we have not
used any mechanism to guarantee short term fairness among
the greedy senders, though 1 sec statistics indicate roughly
equal rates. Consistent with Figure 4(a), we see that line
rate is reached for all packet sizes.

In the Rx experiments, the source spreads packets evenly
to all destinations, one 3-tuple per MultiStack port. Since
the total amount of packets is constant (i.e., it is limited

ACM SIGCOMM Computer Communication Review 56 Volume 44, Number 2, April 2014

by the 10Gb/s pipe), increasing the number of ports means
that each port gets fewer packets per system call, where each
system call has a certain overhead. This explains why we
are slightly below line-rate for 64-byte packets and larger
number of ports.

5. EVALUATION WITH A USER-SPACE
STACK AND APPLICATION

The main goal of MultiStack is to allow new network
stacks or features to be more easily (and quickly) tried out
and deployed. However, this will only happen if such stacks
can yield good performance. In the previous section we
showed that MultiStack would not be the bottleneck, so the
question now is whether we can implement an efficient user-
level stack on top of it.

One might suggest simply running stacks extracted from
the kernel in user-space [13, 17]. However, this approach
would hinder the performance evaluation of MultiStack,
since it results in two orders of magnitude lower performance
than the rates presented in the previous section. Instead,
we carry out our investigation of user-space stacks by devel-
oping, from scratch, UTCP, a simple TCP implementation
which is fully aware of MultiStack (e.g., packet batching and
integration with an event loop of the netmap API).

5.1 UTCP
UTCP is a simple user-level TCP library that we devel-

oped and that can be linked to an application. Its API boils
down to a few functions: tcp_input() to process a packet
received, tcp_output() to add data to an outgoing connec-
tion, and tcp_close() to close a connection. The poll()

system call is used to send and receive packets to the Mul-
tiStack port, possibly in batches.

Figure 5 shows basic packet reception code that an ap-
plication running on top of UTCP can use. From the main
event loop, each input packet goes to tcp_worker(), which
handles basic functions (SYN/ACK/FIN processing, among
others). Depending on the return code we then may have a
chance to process new incoming data.

In this paper we use these relatively low-level APIs in or-
der to see the ideal performance of user-space stacks, that
is, without incurring overheads that would arise from things
like socket API emulation. In Section 6 we discuss the in-
clusion of more practical APIs in MultiStack in order to
encourage adoption of user-space stacks.
5.2 Evaluation: Simple HTTP Server

We tested the performance of UTCP by building a simple
HTTP server on top of it. The application-specific logic, im-
plemented in process_data(), is marginal: a single strcmp()
to validate HTTP GETs, and a bit more code to reply with
the HTTP OK header and payload using tcp_output(),
which then does the necessary segmentation. An HTML file
served as the HTTP OK is mmap()ed to UTCP’s address
space at HTTP server initialization time. The application
data is thus copied twice: once from application/stack into
the back-end switch’s virtual port, and once from it to a
NIC packet buffer.

We are interested in the connection setup and data trans-
mission performance, so we issue a single HTTP transac-
tion per connection while varying the payload size between
1 and 32 KB §. The smaller fetch size is useful to measure

§A recent study claims that 73% of TCP connections deliver

i n t t c p e v e n t l o o p (t c p wo r k e r t ∗worker) {
s t r u c t pk t bu f s ∗ bu f s = &worker−>pk t bu f s ;
wh i l e (1) {

p o l l (worker−>f d) ; /∗ get new packe t s ∗/
f o r (; bufs−>unp roce s s ed ; n e x t pk t (buf))

t cp wo rk e r (pk t bu f (bu f s) , worker) ;
}

}
/∗ Proce s s a s i n g l e packe t ∗/
vo id t cp wo rk e r (char ∗pkt , t c p wo r k e r t ∗w) {

/∗ Parse pkt , i n i t TCP f o r new conn . ∗/
i n t s t a t u s = t c p i n p u t (pkt , w−>t c b s) ;
i f (s t a t u s == NEW CONNECTION)

; /∗ no−op , TCB a l r e a d y s e t i n t c p i n p u t () ∗/
e l s e i f (s t a t u s == NEW DATA)

p r o c e s s d a t a (w) ;
e l s e i f (s t a t u s == NEW ACK) {

i f (w−>data . o f f == w−>da t a e o f)
t c p c l o s e (w−>tcbs−>cu r) ;

}
}

Figure 5: Pseudo-code for packet reception using
UTCP.

 0

 2

 4

 6

 8

 10

1 8 16 32

G
b

p
s

Fetch size (KB)

nginx-TSO
FBSD

FBSD-TSO
UTCP

Figure 6: Performance of a simple HTTP server run-
ning on top of UTCP compared to other solutions
using the host stack (single CPU core).

connection setup performance, and the larger one is useful
to evaluate data transmission performance.

In Figure 6 we compare the performance of four differ-
ent configurations: our server on top of UTCP; the same
server on top of the socket library (the functions in our sim-
ple HTTP server can be trivially implemented on top of
the socket library) running on the OS stack with or with-
out TCP Segmentation Offloading (FBSD-TSO and FBSD
respectively); and nginx. All configurations use one core,
and ten packets for the initial window size. Our client is
wrk [8], a fast, multi-threaded HTTP benchmark tool. The
hardware setup is the same as in Section 4.

The results (Figure 6) confirm that the efficient datap-
ath provided by MultiStack supports very high throughput,
up to 8 Gbit/s (and approx 100 K requests/s for short re-
quests) on a single CPU core, without using any NIC accel-
eration nor exploiting application knowledge. At least for
these transfer sizes (relevant to HTTP servers), UTCP out-
performs the host TCP stack, even when the latter is using
TSO.

6. DISCUSSION
We have presented results that show MultiStack’s high

performance when running user-level stacks and applications
on top of them. Such performance derives from two main
factors. The first is a result of the streamlined data path
from a NIC to user-level stack and the fact that MultiStack’s
isolation and mux/demux mechanisms incur little overhead.

less than 4,380 bytes of data [1].

ACM SIGCOMM Computer Communication Review 57 Volume 44, Number 2, April 2014

Second, our UTCP stack foregoes the expensive connection
setup costs associated with the socket API (alloc/dealloc
of file instances, inode entries and unassigned file descrip-
tors [9]). Indeed, comparing UTCP to FBSD-TSO we see a
90% speedup with a 1KB fetch size, where a relatively long
time is spent on connection setup, and a 58% speedup with a
8KB fetch size, where a smaller fraction of the time is spent
on that operation.

The last point raises the issue of what is a proper API for
applications. Emulating the socket API clearly makes user-
space stacks amenable to existing applications; however, ex-
actly reproducing the semantics of the socket API (e.g., with
respect to fork(), see [24]) is non-trivial and would have a
negative impact on performance. For this reason we do not
try to emulate the socket API completely, but believe that
providing reasonably similar, generic APIs would allow for
relatively easy adoption of user-level stacks while retaining
high performance. There are a number of reasons in support
of this decision.

First, MultiStack already supports legacy applications
through the host stack. Second, applications already lever-
age network API wrapper libraries such as libevent and
libuv, which provide higher-level functionality and hide OS-
specific features (e.g., epoll() in Linux and kqueue() in
MacOS and FreeBSD). Finally, the quest for performance
has historically pushed for new APIs (e.g., sendfile(),

epoll() and recent proposals such as MegaPipe [9]), and
developers are generally open to using better, more perfor-
mant APIs even if it means having to adapt applications.

7. CONCLUSION
In this paper we have argued for the adoption of user-

level network stacks to accelerate the evolution of protocols.
While MultiStack requires the inclusion of a kernel module,
this change to the kernel is only needed once, after which
deployment of new features can be easily and quickly be
carried out in user-space.

Our experiments show that our MultiStack prototype can
switch minimum-sized packets at 10Gb/s while supporting
a substantial number of user-space stacks. To showcase the
benefits of MultiStack, we have also implemented UTCP—a
user-level TCP stack—and a simple web server. The HTTP
server/UTCP combination runs 18-90% faster than similar
applications using the host stack, despite the fact that Mul-
tiStack does not (yet) support hardware offload.

Future work will address the design of a more com-
plete user-level TCP stack implementation. At the moment
UTCP is just a proof of concept, and most existing user
space TCP prototypes are equally incomplete, old and not
necessarily designed to exploit batching and achieve high
speed. We also plan to work on the design of APIs for user-
space protocol stacks, possibly adapting and adopting exist-
ing networking libraries such as libuv and MegaPipe as well
as socket-like APIs. This will make it easier for new and
existing network applications to adopt user-space stacks.

Finally, we also plan to support the offloading features
available in modern NICs. While we showed that user-space
stacks without TSO can achieve higher performance than an
in-kernel stack with TSO, it makes sense to leverage offload-
ing capabilities where available. These would be comple-
mentary to the kernel, network stack and API optimizations
presented in this paper.

Acknowledgments
The research leading to these results was partly funded
by the EU FP7 CHANGE (257322) and Trilogy2 (317756)
projects.

8. REFERENCES
[1] M. Allman. Comments on buffer bloat. ACM CCR, 43:31–37,

2013.

[2] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and
D. Boneh. The case for ubiquitous transport-level encryption.
In Proc. USENIX Security Symposium, Aug 2010.

[3] K. Cho, K. Mitsuya, and A. Kato. Traffic data repository at
the WIDE project. USENIX ATC, 2000.

[4] P. Druschel and G. Banga. Lazy receiver processing (lrp): A
network subsystem architecture for server systems. In Proc.
USENIX OSDI, Oct. 1996.

[5] T. Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing. In Proc. ACM SOSP, pages 40–53, 1995.

[6] F. Fusco and L. Deri. High speed network traffic analysis with
commodity multi-core systems. In Proc. ACM IMC, pages
218–224, 2010.

[7] G. Ganger, D. Engler, M. Kaashoek, H. Briceno, R. Hunt, and
T. Pinckney. Fast and flexible application-level networking on
exokernel systems. ACM ToCS, 20(1):49–83, 2002.

[8] GitHub. Modern HTTP benchmarking tool.
https://github.com/wg/wrk, July 2013.

[9] S. Han, S. Marshall, B. Chun, and S. Ratnasamy. Megapipe: A
new programming interface for scalable network i/o. In Proc.
USENIX OSDI, Oct. 2012.

[10] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley,
and H. Tokuda. Is it Still Possible to Extend TCP? In Proc.
ACM IMC, pages 181–192, 2011.

[11] Intel Open Source Technology Center. Intel DPDK vSwitch.
https://01.org/packet-processing/intelo-ovdk, 2014.

[12] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. RFC 1323, May. 1992.

[13] A. Kantee. Environmental Independence: BSD Kernel TCP/IP
in Userspace. AsiaBSDCon, 2009.

[14] C. Maeda and B. Bershad. Networking performance for
microkernels. In Proc. IEEE WOS, pages 154–159, 1992.

[15] C. Maeda and B. Bershad. Protocol service decomposition for
high-performance networking. In Proc. ACM SOSP, pages
244–255, 1993.

[16] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
Selective Acknowledgment Options. RFC 2018, Oct. 1996.

[17] B. Penoff, A. Wagner, M. Tuxen, and I. Rungeler. Portable and
Performant Userspace SCTP Stack. In Proc. IEEE ICCCN,
pages 1–9, 2012.

[18] D. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. Hunt. Rethinking the library os from the top down. In Proc.
ACM ASPLOS, Mar. 2011.

[19] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. Tcp fast open. In Proc. ACM CoNEXT,
December 2011.

[20] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How Hard Can
It Be? Designing and Implementing a Deployable Multipath
TCP. In Proc. USENIX NSDI, 2012.

[21] I. Rhee and L. Xu. Cubic: A new tcp-friendly high-speed tcp
variant. Proc. PFLDNeT, 2005.

[22] L. Rizzo. netmap: a novel framework for fast packet I/O. In
Proc. USENIX ATC, 2012.

[23] L. Rizzo and G. Lettieri. Vale: a switched ethernet for virtual
machines. In Proc. ACM CoNEXT, December 2012.

[24] SolarFlare. OpenOnLoad. http://www.openonload.org, 2013.

[25] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp
approach for high-speed and long distance networks. In Proc.
IEEE INFOCOM, pages 1–12, 2006.

[26] C. Thekkath, T. Nguyen, E. Moy, and E. Lazowska.
Implementing network protocols at user level. IEEE/ACM
ToN, 1(5):554–565, 1993.

[27] Wikipedia. QUIC. http://en.wikipedia.org/wiki/QUIC, 2014.

[28] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. Design,
implementation and evaluation of congestion control for
multipath TCP. In Proc. USENIX NSDI, 2011.

ACM SIGCOMM Computer Communication Review 58 Volume 44, Number 2, April 2014

