
What We Talk About When We Talk About
Cloud Network Performance

Jeffrey C. Mogul Lucian Popa
HP Labs HP Labs

jeff.mogul@hp.com lucian.popa@hp.com

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

Abstract
Infrastructure-as-a-Service (“Cloud”) data-centers intrinsically de-
pend on high-performance networks to connect servers within the
data-center and to the rest of the world. Cloud providers typically
offer different service levels, and associated prices, for different
sizes of virtual machine, memory, and disk storage. However,
while all cloud providers provide network connectivity to tenant
VMs, they seldom make any promises about network performance,
and so cloud tenants suffer from highly-variable, unpredictable net-
work performance.

Many cloud customers do want to be able to rely on network
performance guarantees, and many cloud providers would like to
offer (and charge for) these guarantees. But nobody really agrees
on how to define these guarantees, and it turns out to be challenging
to define “network performance” in a way that is useful to both
customers and providers. We attempt to bring some clarity to this
question.

Categories and Subject Descriptors
C.2.1 [Computer-communication Networks]: Network Architec-
ture and Design

General Terms
Performance

Keywords
cloud networks, performance guarantees

1. INTRODUCTION
Without high-performance networks, there would be no such

thing as cloud computing. Cloud data centers intrinsically depend
on high-performance networks to connect servers within the data-
center and to the rest of the world.

In particular, Infrastructure-as-a-Service (IaaS)1 providers typi-
cally offer different service levels, and associated prices, for differ-
ent sizes of virtual machine, memory, and disk storage. However,
while all cloud providers provide network connectivity to tenant
VMs, they seldom make any promises about network performance
– bandwidth, latency, and loss – and so cloud tenants suffer from
highly-variable, unpredictable network performance.

Many cloud customers do want to be able to rely on network
performance guarantees, and many cloud providers would like to
offer (and charge for) these guarantees. But most cloud providers

1We will use the term “cloud” informally instead of the uglier, but
more precise, “Iaas.” Much of this paper might be applicable to
other cloud forms – PaaS, SaaS, etc. – but we focus on IaaS.

offer no guarantee for network performance. This leads to ap-
plication performance problems; for example, Ballani et al. [3]
summarize several measurement studies showing huge (order-of-
magnitude) variations in intra-cloud bandwidth, and describe how
performance variability leads to “poor and unpredictable applica-
tion performance.” Some of these studies have also shown that no-
guarantee cloud networks also suffer from high and highly variable
latency, and high loss rates.

But nobody really agrees on how to define these guarantees, and
it turns out to be challenging to define “network performance” in a
way that is both useful to customers and plausibly implementable
by providers.

In fact, there is plenty of prior work (see Section 2) aimed at
various specific approaches to providing cloud network guarantees.
Almost all of the prior work, however, proposes one approach and
compares it against a no-guarantee network; they have not tried to
explore where they are in the space of possible options.

We hope, in this paper, to bring clarity to this question: what
kinds of network performance guarantees make sense, for both
cloud customers and cloud providers?

To simplify the discussion, in this short paper, we do not address
the challenges of guaranteeing performance between tenant VMs
and the Internet, between different tenants, or across geographical
regions or “availability zones” (AZs). We focus on guarantees for
communication between the VMs of one tenant in one AZ.

2. PROPOSED APPROACHES
We start by reviewing some of the proposals for providing per-

formance guarantees within cloud networks. These summaries are
necessarily brief and hence may be oversimplified.

No multi-tenancy: Some cloud providers offer the equivalent of
non-shared networks (e.g., Amazon’s Cluster Compute “placement
groups” offer 10 Gbps full bisection bandwidth between VMs2).
However, these offerings typically support little or no resource mul-
tiplexing, and hence cost a lot more.

Distributed Rate Limiting: Raghavan et al. [13] described
DRL, which enforces a global limit on the sum of the traffic gen-
erated by all of the sites for a given tenant (if the tenant has VMs
in multiple sites). The DRL approach could perhaps be extended
to limiting inter-VM flows within a site. One focus of DRL was
to support flat-rate, rather than usage-based pricing, and to allow
a given service some flexibility in how it allocates the total band-
width among its VMs.

NetShare: Lam et al. [11] described NetShare, which assigns
a specific weight to each tenant, e.g., based on payment, and then
allocates congested links between tenants in proportion to weights.

2https://aws.amazon.com/hpc-applications/

ACM SIGCOMM Computer Communication Review 44 Volume 42, Number 5, October 2012

Since the weights are network-wide, but congestion is link-by-link
and can involve varying numbers of VMs, NetShare does not pro-
vide straightforward bandwidth guarantees.

SecondNet: Guo et al. [9] proposed the “Virtual Data Center”
(VDC) abstraction for their SecondNet architecture, with three ser-
vice models: “type-0” service guarantees bandwidth between pairs
of VMs3; “type-1” service provides ingress/egress guarantees for
a specific endpoints; other traffic is treated as best-effort. An end-
point can be an entire VM, or a TCP/UDP port on a VM.

Seawall: Shieh et al. proposed Seawall, which “achieves
max-min fairness across [source] tenant VMs by sending traf-
fic through congestion-controlled, hypervisor-to-hypervisor tun-
nels” [15]. Seawall focusses on scaling to large numbers of tenants
and VMs, and on efficient use of bandwidth (by avoiding fixed re-
source reservations). Seawall provides no performance predictabil-
ity, however.

The Seawall paper also attempted to “[explore] the design space
for achieving performance isolation between tenants,” comparing
a variety of existing approaches (e.g., 802.1p/1qaz, QCN, MPLS,
RSVP, etc.). That paper did not carefully explore the space of pos-
sible policies – the forms that performance guarantees might take
– and instead focussed on link-level fairness between VM-to-VM
flow aggregates.

Topology switching: Webb et al. [17] observed that different
applications (“tasks”) have different kinds of requirements for net-
work performance. Their proposed design lets tasks request spe-
cific properties of the physical topologies that underlie their virtual
networks. Properties are associated with paths between VMs, and
include bandwidth, resilience (in terms of the number of link-level
cuts the path can tolerate), and isolation.

They express the latter as k-isolation, where k is the number of
other tasks sharing a link. From the point of view of task perfor-
mance, the meaning of k = 0 is clear; it is less clear what (if
anything) is guaranteed when k > 0. Also, this approach might
not scale beyond a small number of tenants, because it might be
impossible to find a satisfactory mapping of virtual paths to real
links.

Gatekeeper: Rodrigues et al. [14] described Gatekeeper, which
focusses on providing predictable performance. Gatekeeper at-
tempts to provide each tenant with the illusion of a single, non-
blocking switch connecting all of its VMs. Each VM is given guar-
anteed bandwidth, specified per-VM, into and out of this switch.4

Optionally, a VM’s maximum bandwidth can be set larger than its
guarantee, to allow use of otherwise underutilized bandwidth. This
allows the provider to trade off between efficiency and predictabil-
ity, by adjusting either or both of the minimum and maximum band-
widths.

Gatekeeper uses hypervisor-based rate limits, and a feedback-
based mechanism to prevent remote VMs from sending more traffic
to a VM than it is allowed to receive. This is especially important to
prevent problems caused by non-TCP-friendly flows. Gatekeeper
attempts to prevent congestion on access links, but it assumes that
the core is fully-provisioned (i.e., core links are never congested),
which might be optimistic.

Oktopus: Ballani et al. [3] also focus on performance pre-
dictability. They start with “Virtual Cluster” abstraction, similar
to Gatekeeper, in which all VMs of a tenant appear to be a cluster
connected to a single switch, with links of capacity B. They then
extend this to the “Virtual Oversubscribed Cluster” (VOC) model,

3Expressing guarantees in terms of bandwidth between pairs of
VMs is known as the “pipe model”; see Section 3.3.
4This kind of guarantee is known as the “hose model”; see Sec-
tion 3.3.

in which clusters with switch-to-VM bandwidth B are intercon-
nected with a fixed oversubscription factor O. VOC recognizes
that applications have structure, and respects application structures
that do not need, and do not wish to pay for, full bandwidth among
all pairs of VMs.

Oktopus is an implementation of the VOC model, using
hypervisor-based rate limiters together with a detailed algorithm
for placing VMs in order to meet the requested bandwidth demands
(or to reject requests that cannot be met.) Because Oktopus relies
on VM placement, it might introduce some delays associated with
moving VMs as workloads change.

FairCloud: Popa et al. [12] analyzed a set of goals in the design
space for sharing cloud networks, and the inherent tradeoffs be-
tween these goals. The authors argued that cloud networks should
provide, in addition to minimum bandwidth guarantees, high uti-
lization of network links in the presence of unsatisfied demands,
and network proportionality: division of bandwidth among tenants
in proportion to the number of a tenant’s VMs. They showed that
one cannot simultaneously provide both bandwidth guarantees and
network proportionality. The paper proposes mechanisms that can
achieve different subsets of the desired properties: link-level pro-
portionality, restricted forms of network proportionality, and min-
imum bandwidth guarantees over tree-structured networks. How-
ever, most of the mechanisms proposed in the FairCloud paper re-
quire switch hardware upgrades.

ConEx: Briscoe and Sridharan [4] have proposed a model which
focusses on the amount of congestion that each tenant imposes on
the network, based on the intuition that a tenant’s network load that
does not create congestion does not interfere with other tenants.
Tenants purchase “congestion-bit-rates”, which represent conges-
tion allowances for that tenant. ConEx uses ECN support from
switches to measure congestion, and hypervisor rate-limiters to
ensure tenants do not cause more congestion than they have pur-
chased. The ConEx proposal, however, might not match what cloud
tenants want: it requires them to express their requests in terms
of congestion allowances instead of bandwidth guarantees, and it
could be hard to provide predictable behavior.

2.1 Location-related approaches
Although most proposals attempt to provide quantified guaran-

tees, some researchers have instead focussed on the implications of
VM location.

Location independence: Ballani et al. [2] do not directly ad-
dress the problem of providing network performance guarantees,
but instead focus on how to ensure that “tenant costs, in spite of
(possibly) variable network performance, do not depend on the lo-
cation of their [VMs].” They emphasize the importance not just of
providing good network performance, but of considering how this
affects tenants’ total costs for both VMs and network bandwidth.

They propose a model called “Dominant Resource Pricing”
(DRP), which avoids the problem of a tenant, whose VM is blocked
by a slow network, being charged a lot for un-usable VM hours,
even if the network charges remain low.

Choreo: Instead of assuming that the provider offers a specific
bandwidth guarantee, LaCurts et al. [10] use an application-level
approach. They profile the application to find its network demands;
measure the cloud provider’s network to discover the bandwidth
available between pairs of VMs; and then the application places its
own workload to optimize its predicted performance. Like VOC,
Choreo supports the communication structure of the application;
unlike VOC, Choreo does not try to express that structure explicitly
to the provider.

Choreo expects the provider to allow applications to place VMs

ACM SIGCOMM Computer Communication Review 45 Volume 42, Number 5, October 2012

on specific servers, and it expects that path bandwidths will remain
fairly stable. We are not sure if these assumptions generalize.

2.2 Time-varying approaches
Most research proposals have ignored the possibility that an ap-

plication’s network demands can vary over time, in a predictable
way. For a time-varying workload, no fixed bandwidth guarantee is
optimal. A static guarantee high enough to satisfy the peak work-
load could cause the tenant to pay more than necessary, and it can
prevent the provider from selling the unused (but still committed)
bandwidth to a different tenant.

Proteus: Xie et al. [18] profiled several data-intensive Map-
Reduce-style applications, and showed that many such applications
exhibit predictable time-varying behavior at timescales on the order
of tens of seconds. They proposed a Temporally-Interleaved Virtual
Cluster (TIVC) abstraction, similar to VOC but which allows the
provider to admit multiple jobs that effectively time-share the same
bandwidth. Their Proteus system profiles a running application to
derive a model, uses the model to offer the tenant several choices of
cost/performance tradeoffs for future executions, and then runs an
allocation algorithm to place VMs so as to maximize throughput.

Cicada: In our own work in progress, we started from sev-
eral observations: (1) that many workloads vary predictably over
time, although we focus on diurnal variations rather than the much
shorter timescales of Proteus; (2) that, as with the basis for the Ok-
topus VOC model, traffic demands also vary in space – some VM
pairs communicate more intensively than others; and (3) precise
bandwidth guarantees might be both less necessary and less fea-
sible than coarsely-specified guarantees. In the Cicada approach,
the tenant starts with an initial placement of VMs and an estimated
traffic matrix. The provider then profiles the application (similar
to Proteus, but over longer timescales), with the aim of predicting
the traffic matrix and how it varies diurnally. If the matrix appears
predictable, the provider may propose to the tenant a time-varying
or spatially-varying guarantee for future periods.

3. DESIRABLE PROPERTIES
Essentially every paper on the topic of cloud network perfor-

mance sets out a list of desirable properties. However, people do
not always agree on what is desirable, and sometimes there are in-
herent conflicts to resolve (as demonstrated in [12]). Beyond that,
there are some issues that have not surfaced, to our knowledge, in
prior work.

3.1 Consensus properties
There is agreement in broad terms that a solution needs to be

scalable, efficient, and predictable. By “scalable” we mean that the
solution must work for very large numbers of VMs, tenants, server
machines, and (potentially) switches. It also means that the solution
should scale to higher bandwidths. By “efficient” we mean both
that the solution not require expensive hardware resources, and that
it does not waste resources – the low-cost business model for cloud
computing requires this.

Predictable performance is important in cloud networks. Most
applications are themselves expected, by their owners or customers,
to meet performance objectives (system-level objectives, or SLOs).
When network performance (bandwidth, latency, or loss) becomes
highly variable, either the SLOs suffer, or the application must be
so over-provisioned with resources that its cost structure suffers.

Generally, the requirements for scalability and efficiency have
led to designs that rely on resources at the edge (for example,
hypervisor-based rate limiters) and avoid resources in the network
core (e.g., switch-HW rate limiters). Hypervisor resources scale

nicely with Moore’s Law, and generally are easier to implement
and upgrade than switch HW features.

3.2 Contentious properties
After these consensus properties, things become more complex.

The problem is exacerbated by a lingering tendency to transfer de-
sirable properties from the public Internet to a multi-tenant cloud
network.

For example, we traditionally have wanted our networks to be
work-conserving and fair. Both of these properties can be valu-
able in a cloud network, but not necessarily as we have previously
understood them.

A work-conserving solution certainly improves efficiency over
one that supports only static guarantees and therefore cannot al-
ways exploit reserved-but-unused resources. (E.g., Oktopus as
described in [3] is not work-conserving.) However, a work-
conserving system is not fully predictable: the excess bandwidth
that you got yesterday might not be available tomorrow. Some
cloud providers are reluctant to offer excess capacity at zero cost,
because this risks “training” their customers to expect a lower total
cost than is justified, or better performance than can be sustained
in the future. Hence, we believe that the ideal solution should be
work-conserving, but should support billing for bandwidth in ex-
cess of any guarantees.

Similarly, we almost certainly want to provide fairness between
the flows of a given tenant; otherwise, applications such as MapRe-
duce suffer from “stragglers.”

But we do not believe it is necessary to strive for fairness between
tenants. This statement might seem surprising at first.5 However,
while bandwidth guarantees provide a clear benefit to tenants, in
the form of predictable bounds on runtime performance, fairness is
an abstract concept that is harder to justify. Consider two customers
(e.g., Coors and Budweiser) sharing the same cloud network. As
long as Coors’ VMs get the bandwidth that the provider has guar-
anteed to them, and can obtain additional bandwidth at reasonable
prices, why should they care whether the provider is allocating the
additional bandwidth fairly? In fact, what Coors should care about
is isolation, in the sense that Budweiser cannot, by exceeding its
own bandwidth limits, intentionally interfere with Coors’ traffic.6

Beyond that, Popa et al. [12] showed that one cannot simulta-
neously achieve both fairness and minimum bandwidth guarantees.
Whether network-level fairness is even achievable remains an open
question, and it might require complex mechanisms.

The cloud provider, in fact, might want to engage in price dis-
crimination – that is, providing different prices to different cus-
tomers for the same level of service. Price discrimination is a
common mechanism (think of airline tickets), and what it requires
is that unfairness (if it exists) is under the control of the cloud
provider, or that the provider can at least correct for unfairness in
the spot-bandwidth billing mechanism. Simply preventing unfair-
ness, per se, might not be worth the cost.

In general, we believe that one cannot discuss cloud performance
without considering pricing. In particular, discussing whether a
cloud network’s services should be work-conserving or fair cannot
be divorced from the economics of selling its services.

Is there a tradeoff between predictable performance, predictable
bills, and minimal cost? Ballani et al. [2] suggest that DRP can pro-
vide predictable pricing to “job-like” (batch) applications, but that

5Some previous papers (e.g., [1, 12]) have made inter-tenant fair-
ness an explicit goal, and many others have implied that such fair-
ness is their goal.
6Lam et al. [11] similarly argue that “max-min fair sharing at the
TCP level ... is the wrong model.”

ACM SIGCOMM Computer Communication Review 46 Volume 42, Number 5, October 2012

long-running user-facing services will get more predictable pricing
from a model such as Oktopus or GateKeeper. However, while the
latter models provide a fixed monthly cost rather than a predictable
per-job cost, they cannot both do that and also maintain service-
level performance guarantees under varying workloads.

3.3 Granularity of guarantees
There are several basic ways in which the endpoints (the “who”

as opposed to the “what”) for bandwidth guarantees can be ex-
pressed:

• Tenant aggregate: as in DRL, where an application specifies
one global aggregate bandwidth.

• per-VM Hose model: as in Gatekeeper, where an applica-
tion specifies O(N) per-VM bandwidths, and perhaps la-
tency limits.

• per-VM Pipe model: as in SecondNet where an application
using N VMs would need to specify O(N2) pairwise band-
widths, and perhaps latencies.

• per-flow QoS model: as in SecondNet, which optionally
supports QoS guarantees (bandwidth and/or latency) for TCP
connections or TCP ports.

We list these models in order of increasing granularity and com-
plexity of expressing a tenant’s needs. There is a tradeoff here:
low-complexity models (such as DRL) are easy to specify, but po-
tentially hard to reason about, in terms of what the guarantees actu-
ally mean.7 Fine-grained models offer more control to the applica-
tion, but also impose more complexity on the application program-
mer, and could require considerably more resources to implement.
(Even hypervisor cycles are not free.)

The Gatekeeper paper [14] has argued that the pipe and QoS
models are too detailed, because “tenants do not understand their
applications’ communication patterns well enough to specify their
bandwidth requirements between each pair of VMs.” While Sec-
ondNet [11] supports per-flow or per-port granularity as an option,
that seems to require excessive detail for most users. (Providers
might need to allow users to control the relative priorities of some
of their own flows.)

The VOC model [3] may strike a useful intermediate point in
the complexity space: mostly it sticks to the hose model (which
is plausibly easy to reason about, but not too complex to specify),
but it allows the application’s bandwidth requirements to reflect its
coarse structure. VOC thus allows customers to pay only for the
bandwidth that their applications need.

We fully expect additional research to generate new abstractions
for expressing bandwidth guarantees.

3.4 Topology and location: hide or expose?
Ballani et al. [2] have argued for location-independent costs: “a

tenant’s location is a knob for the provider and is of no interest to
the tenant.” On the other hand, LaCurts et al. [10] showed that
a tenant that knows the locations of its VMs in a cloud network
can exploit this information to improve performance, and Webb et
al. [17] have proposed that tenants should be able to specify prop-
erties related to the underlying physical topology.

From a provider’s point of view, it can be risky to reveal too
much about the underlying topology. Providers may need the flex-
ibility to change their network topologies as technologies evolve,
and do not want to be locked into an outdated design simply be-
cause their customers have become dependent on specific details.
(While a provider might not rewire an existing availability zone, it

7Vogels [16] reports that “pricing complexity” created problems
for users of Amazon’s SimpleDB service.

might wire new AZs differently, and would not want a customer to
depend on all AZs having the same topology.)

A cloud provider wishing to support customers with both job-
like applications and long-running services may wish to expose a
carefully chosen level of visibility for topology and VM location
within this topology. This view could remain virtual, in the sense
that a customer should only see enough to make rational choices
about its contract with the provider, and about where to place func-
tions within its virtual network.

A provider might not want to make actual physical links visi-
ble to customers – that is, to allow a customer to know or care
whether two of its VMs are connected via any specific arrange-
ment of links and switches. First, this might not provide any useful
value to customers, as long as the provider is willing to support rea-
sonable guarantees in other forms. Second, exposing this informa-
tion could lock a provider into specific placements of tenant VMs,
which would reduce the provider’s ability to redistribute VMs for
reasons such as churn, power management, or hardware mainte-
nance.

Customers should expect to pay more for virtual-topology re-
quests that place more specific constraints on the provider. For
example, customer L has long-running analytics jobs, customer S
runs a social-networking site, and both start with 10 VMs provi-
sioned for 1Gbps (using the hose model). If either customer re-
quests an increase to 20 VMs, L might tolerate some downtime,
but S, with online users, would not. Since S’s need for responsive-
ness precludes certain techniques that a provider could use to find
more network bandwidth, such as moving VMs between racks, S
might expect to pay more than L for the same per-VM bandwidth.

3.5 Other issues
A cloud provider that makes guarantees about network perfor-

mance must also address several other issues.
Responsiveness: Almost all of the prior work has focussed on

providing performance guarantees based on the nature or location
of a VM, but with an implicit assumption that a VM’s bandwidth
needs are constant. For example, a long-running service may flex
its VM allocation up or down, but its bandwidth requirements per
VM can be considered constant. Batch applications, however, may
have phases during which their bandwidth requirements change
significantly, either in aggregate or with respect to hotspots in their
traffic matrices.

Greenberg et al. [8] reported that traffic matrices in their data
centers have little predictability on scales of 100 sec. or more. Lam
et al. [11] identified the issue of “responsiveness”: how quickly
can the provider respond to a change in bandwidth requirements?
We see responsiveness as a critical aspect of cloud guarantees;
that is, a useful guarantee not only provides a bound on band-
width and latency when the tenant’s requirements are steady, but
also provides a bound on how long it takes to restore these guar-
antees after a tenant requests a bandwidth increase or decrease
(assuming the provider accepts the request). Providers can also
benefit from clearly-specified non-zero bounds on responsiveness,
since this gives them a known target for designing the bandwidth-
reallocation mechanism.

Responsiveness is distinct from the opportunity identified by Xie
et al. [18] as the basis for their Proteus system. While Proteus can
exploit predictable patterns time-varying behavior, it does not ad-
dress the problem of responding to unpredictable changes in re-
quirements.

Support for operators, not just for programmers: For many
potential cloud customers, applications are built by one team and
operated by another. Because cloud applications often flex up and

ACM SIGCOMM Computer Communication Review 47 Volume 42, Number 5, October 2012

down as workloads change, tenant programmers need to think in
terms of abstract sets of resources, but tenant operators must work
with concrete resources (e.g., “today we need 15 VMs to run this
application; tomorrow we will need 18 VMs.”) Operators therefore
probably need to be able to request changes in guaranteed or max-
imum bandwidth, in order to maintain predictable service levels,
without having to make changes to application code, and without
having to make per-flow or per-pipe configuration changes.

Billing intervals: Since existing cloud providers make no guar-
antees about network performance, they generally do not bill ten-
ants for transfers within an AZ, and they bill by the GByte for other
transfers. However, this simple model does not work well when a
provider offers spot-market pricing for non-guaranteed bandwidth,
since the billing system needs to distinguish between guaranteed-
bandwidth bytes and excess (spot-market) bytes. This, in turn, re-
quires the provider to choose a billing-measurement interval that is
short enough to clearly distinguish between the two kinds of bytes,
but long enough to avoid excessive measurement overheads.

The DRP mechanism proposed by Ballani et al. [2] presumably
must make a similar distinction between periods when the VM’s
CPU is the bottleneck resource (and so the user is charged only for
CPU utilization) and when the VM is network-limited (and so the
user is charged only for network use).

Availability and reliability: Topology switching (Webb et
al. [17]) offered tenants control not only over network bandwidth
but also failure resilience, which they defined in terms of “the num-
ber of cuts r in the physical substrate required to break a logical
link.” They point out that increasing resilience might require in-
creasing path length, which can hurt both latency and bandwidth.
More generally, a provider could offer varying levels of network
availability System-Level Agreements (SLAs) at different prices.
While customers might want both high performance and high avail-
ability, these two properties might sometimes conflict, especially if
the network performance guarantees must survive underlying link
or switch failures. (This would require the provider to set aside
some bandwidth for use during partial network failures.)

4. SUMMARY
We see a widespread recognition that cloud providers will have

to start providing network-related guarantees in order to support a
broad range of applications that demand predictable performance
and cost. Many researchers have attacked cloud network perfor-
mance, often with unique definitions of the problem to guide their
choice of a solution.

Our view is that cloud-network performance guarantees:

• Should be scalable, efficient, and predictable; there is little
controversy on these points.

• Should focus on inter-tenant isolation and predictable
pricing, not on inter-tenant fairness, which by itself is not
a primary concern for most tenants.

• Will need to strike a balance between expressiveness and
complexity, especially in how much they aggregate guaran-
tees over multiple flows and endpoints.

• Should expose the tradeoff between availability, perfor-
mance, and cost, allowing the tenants to make choices when
necessary.

• Should recognize that an application’s traffic demands are
not always uniform in space and time, and that a guarantee
based on uniform demands can lead to inefficient economics.

While we do not expect all providers to adopt a single network
performance model – in fact, there are many good reasons to offer
a variety of options – we believe that further progress requires a

common understanding of the choices and their implications for the
relationship between cloud providers and their customers. In this
paper, we have attempted to bring the research community closer
to such an understanding.

5. REFERENCES
[1] M. B. Anwer, A. Nayak, N. Feamster, and L. Liu. Network

I/O fairness in virtual machines. In Proc. VISA, pages 73–80,
2010.

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. The
price is right: towards location-independent costs in
datacenters. In Proc. HotNets, 2011.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In Proc.
SIGCOMM, pages 242–253, 2011.

[4] B. Briscoe and M. Sridharan. Network Performance Isolation
in Data Centres using Congestion Exposure (ConEx).
http://datatracker.ietf.org/doc/draft-
briscoe-conex-data-
centre/?includ%e_text=1, 2012.

[5] R. Carver. What We Talk About When We Talk About Love.
Knopf, 1981.

[6] N. Englander. What We Talk About When We Talk About
Anne Frank. Knopf, 2012.

[7] M. Gerber and J. Schwarz. What We Talk About When We
Talk About Doughnuts. The New Yorker, page 51, May 10
1999.

[8] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and
Flexible Data Center Network. In Proc. SIGCOMM, 2009.

[9] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A Data Center Network
Virtualization Architecture with Bandwidth Guarantees. In
Proc. Co-NEXT, 2010.

[10] K. LaCurts, S. Deng, and H. Balakrishnan. Choreo:
Network-aware Workload Placement for Cloud Computing
Systems. Unpublished work in progress.

[11] T. Lam, S. Radhakrishnan, A. Vahdat, and G. Varghese.
NetShare: Virtualizing Data Center Networks across
Services. Technical Report CS2010-0957, UCSD-CSE, May
2010.

[12] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy,
S. Ratnasamy, and I. Stoica. FairCloud: Sharing the Network
in Cloud Computing. In Proc. SIGCOMM, 2012.

[13] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum,
and A. C. Snoeren. Cloud control with distributed rate
limiting. In Proc. SIGCOMM, pages 337–348, 2007.

[14] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and
D. Guedes. Gatekeeper: supporting bandwidth guarantees for
multi-tenant datacenter networks. In Proc. WIOV, 2011.

[15] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
performance isolation for cloud datacenter networks. In
Proc. HotCloud, 2010.

[16] W. Vogels. Amazon DynamoDB.
http://www.allthingsdistributed.com/
2012/01/amazon-dynamodb.html, 2012.

[17] K. C. Webb, A. C. Snoeren, and K. Yocum. Topology
switching for data center networks. In Proc. Hot-ICE, 2011.

[18] D. Xie, N. Ding, and Y. C. Hu. The Only Constant is
Change: Incorporating Time-Varying Network Reservations
in Data Centers. In Proc. SIGCOMM, 2012.

ACM SIGCOMM Computer Communication Review 48 Volume 42, Number 5, October 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

