
Passive Aggressive Measurement with MGRP

Pavlos Papageorge
∗

Google
pavlos@google.com

Justin McCann
University of Maryland

jmccann@cs.umd.edu

Michael Hicks
University of Maryland
mwh@cs.umd.edu

ABSTRACT
We present the Measurement Manager Protocol (MGRP),
an in-kernel service that schedules and transmits probes
on behalf of active measurement tools. Unlike prior mea-
surement services, MGRP transparently piggybacks appli-
cation packets inside the often significant amounts of empty
padding contained in typical probes. Using MGRP thus
combines the modularity, flexibility, and accuracy of stan-
dalone active measurement tools with the lower overhead of
passive measurement techniques. Microbenchmark experi-
ments show that the resulting bandwidth savings makes it
possible to measure the network accurately, but faster and
more aggressively than without piggybacking, and with few
ill effects to piggybacked application or competing traffic.
When using MGRP to schedule measurements on behalf
of MediaNet, an overlay service that adaptively schedules
media streams, we show MediaNet can achieve significantly
higher streaming rates under the same network conditions.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Protocol architecture; C.2.3
[Network Operations]: Network Monitoring

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Probing, Passive, Active, Streaming, Available Bandwidth,
Kernel Module, Transport Protocol, Piggybacking

1. INTRODUCTION
The popularity of video streaming sites, live streaming of

concerts, sporting and political events, and person-to-person

∗Work completed while the author was a student at the University
of Maryland. This research was supported in part by NSF grant
CNS-0346989.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09,August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

voice and video conferencing have demonstrated the need
for streaming systems that adapt to changing network con-
ditions. Modern video and VoIP systems include some form
of automatic rate determination during startup, but once a
rate is set, scaling to higher rates can be problematic—how
can the application learn that more bandwidth is available?

This and other problems—such as optimal overlay con-
struction, multi-path routing, and optimal service selection—
can be addressed using network measurement techniques to
infer and respond to current network conditions. Broadly
speaking, current techniques either passively observe exist-
ing traffic, or actively inject probe packets to see how the
network responds. Using passive measurement, an applica-
tion may observe the rate at which its buffers fill or empty
[10] and monitor the rates of packet and frame loss [2, 3].
Passive observations are particularly useful for signaling that
a stream’s rate should be reduced, but do little to suggest
when its rate can be increased [2, 3].

On the other hand, available bandwidth can be inferred by
actively probing the network; when sufficient bandwidth be-
comes available, a stream could be upgraded. Such probing
could take several forms. In the simplest case, the applica-
tion may periodically improve the quality of the video or au-
dio stream, increasing its transmission rate in the hope that
the additional traffic can be supported. This has the obvious
drawback that if insufficient bandwidth is available, session
quality is harmed rather than improved [11, 17]. Another
approach is to use an active measurement tool, such as path-
load [14] or pathchirp [23] to probe the available bandwidth,
and switch to a higher rate only if sufficient bandwidth is
available. The drawback here is that the tool’s probes com-
pete with the application for bandwidth, which could again
harm quality. Finally, we could modify the application to
shape its own data as a measurement tool would, probing
the link periodically to see if there is more headroom [16].
The benefit is that measurement traffic and application traf-
fic do not compete, because they are one and the same. But
this approach is ad hoc: an application coded to use one
active algorithm may not be easily adapted to use another
algorithm, and conversely a single measurement tool cannot
reuse packets from several applications.

In summary: (1) passive measurement is efficient, but in-
adequate to detect when network conditions improve; (2)
active measurement can detect additional bandwidth, but
may adversely affect application traffic, diminishing its ben-
efits; and (3) existing combinations of active and passive
measurements tend to be implemented in a manner that is
neither modular nor reusable.

279

This paper presents the Measurement Manager Protocol
(MGRP), an in-kernel service for performing network mea-
surement that aims to address these shortcomings. The
main novelty of MGRP is that it permits measurement al-
gorithms to be written as if active, but implemented as if
passive; in doing so, it enables measurement algorithms to
be more aggressive in their approach, without harming ap-
plication performance. MGRP works by transparently pig-
gybacking application data inside probes, which mostly con-
sist of empty padding. Rather than send their probe packets
directly (e.g., via UDP), active measurement tools use the
MGRP Probe API to specify an entire train of probes (by
specifying the number of probes, the size of each probe, the
amount of padding, and the gap between probes). MGRP
treats each probe as a vessel that can potentially carry use-
ful payload; data packets bound for the same destination
ride along in the probe and are extracted and delivered sep-
arately when the probes arrive.

By filling most or all probe padding with useful data,
MGRP allows active algorithms to approach the low over-
head of passive algorithms, while retaining the accuracy,
flexibility, and broader applicability of active probing. Mea-
surement can be performed more aggressively, without worry
of negatively impacting application traffic. Indeed, MGRP
addresses our motivating example just as effectively as cus-
tomized approaches [16] that are application-specific, but in
a more modular, reusable fashion, which scales naturally to
more applications and measurement algorithms. For exam-
ple, we have implemented a measurement overlay network
that actively measures its virtual links; applications query
the overlay to acquire up-to-date path conditions. By run-
ning over MGRP, overlay probes can piggyback any applica-
tion traffic traversing the same virtual links, and any active
algorithm added to the overlay will immediately receive the
benefits of piggybacking.

We have written a loadable kernel module for the Linux
2.6.25 kernel that implements MGRP as a Layer 4 trans-
port protocol, and modified TCP to contribute packets to
it (Section 2).1 We have also modified three measurement
tools to use the Probe API, including pathload [14] and
pathchirp [23] for available bandwidth estimation, and bad-
abing [28] for loss estimation. We have implemented a mea-
surement overlay network to use MGRP-aware pathload to
measure available bandwidth, and show how a modified ver-
sion of the MediaNet streaming media overlay network [11]
solves the upscaling problem by using the overlay measure-
ments (Section 3). Microbenchmarks and experiments with
MediaNet (Sections 4 and 5) show that MGRP is efficient,
fair, and timely—MGRP improves the quality of service
available to application source traffic and cross traffic, and
enables measurement algorithms to probe more aggressively
and thus complete more quickly. MGRP is available for
download at http://www.cs.umd.edu/projects/MGRP/.

2. MGRP: THE MEASUREMENT
MANAGER PROTOCOL

This section describes the design, operation, and imple-
mentation of the Measurement Manager Protocol, and dis-

1We focused on TCP because of its broad applicability and
to ensure that piggybacking does not cause harmful effects
to its timing; we believe the results are applicable to UDP-
based streams as well, and could be implemented easily.

 1 /* 5 probes, 1000 bytes each with 1 ms gap */
 2 char buf[1000];
 3 int probe_size = 1000;
 4 int probe_data = 20; /* probe header */
 5 int probe_gap_usec = 1000
 6 int probe_pad = probe_size - probe_data;
 7
 8 /* pass information using ancillary data */
 9 struct iovec v = {iov_base=buf,iov_len=probe_data};
10 char anci[CMSG_SPACE(sizeof(struct mgrp_probe))];
11
12 struct msghdr msg = {
13 .msg_name = daddr, .msg_namelen = sizeof(daddr),
14 .msg_iov = &v, .msg_iovlen = 1,
15 .msg_control = anci, msg_controllen = sizeof(anci)
16 }
17 struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
18 struct mgrp_probe *probe = CMSG_DATA(cmsg);
19
20 int s = socket(AF_INET, SOCK_DGRAM, IPPROTO_MGRP);
21
22 /* pass first probe to MGRP: activate barrier */
23 probe->barrier = 1;
24 probe->pad = probe_pad;
25 probe->gap = 0;
26 probe->piggybacking_allowed = 1;
27 sendmsg(s, &msg, 0);
28
29 probe->gap = probe_gap_usec;
30
31 /* pass probes 2..4 to MGRP */
32 for (i = 2; i <= 4) {
33 sendmsg(s, &msg, 0)
34 /* no delay between calls */
35 }
36
37 /* last probe to MGRP: deactivate the barrier */
38 probe->barrier = 0;
39 sendmsg(s, &msg, 0);
40 /* MGRP sends packet train before it returns */

Figure 1: Pseudo code of a probe transaction in MGRP.

cusses the effects of MGRP piggybacking on applications
and measurement tools.

2.1 Probe transactions
Active measurement tools require little modification to use

MGRP. Rather than schedule and send their own probes
via normal transport (e.g., UDP), measurement tools in-
stead open an MGRP socket and submit a probe transaction,
which is then scheduled via MGRP.

An example probe transaction is shown in Figure 1. Each
probe is specified as a separate call to sendmsg, where the
provided byte buffer (lines 9,14) defines the probe’s header,
and ancillary data (10,15,18) defines other characteristics.
The sendmsg call for the first probe (27) sets the ancillary
flag barrier (23) which activates a virtual barrier inside
MGRP that delimits the beginning of a probe transaction.
As long as the virtual barrier is active, MGRP buffers all
subsequent messages from sendmsg calls (32-35) for that
socket. Ancillary data is also used to indicate how much
padding to include in the packet beyond the provided buffer
(24), the desired interval between the transmission of the
previous probe and the current probe (25,29), and whether
the padding can be used for piggybacking data packets (26).
Unsetting the barrier flag (38) deactivates the virtual bar-
rier so that the last sendmsg call (39) does not return until
MGRP has transmitted the probes as specified, with the
desired header, padding, and inter-probe gaps. The sender
may gather statistics about the probe train transmission via
a subsequent ioctl call (see Section 2.4).

At the destination, the tool’s receiving component calls
recvmsg() on an MGRP socket to receive the probes. Each
received probe consists of the header as provided at the

280

http://www.cs.umd.edu/projects/MGRP/

MGRP

IP

MGRP

IP

TCP

2

Contribute
TCP

packets
Fragment

and piggyback
TCP payload on probes

3

(i)
Packet train with

2 empty probes and
one partially reused

6

Demultiplex
payload from probes

7

Reassemble
packets

and pass to TCP

4Send
MGRP packets

5 Receive
MGRP packets

TCP

apps probers appsprobers

1
Send probes

using the
Probe API

8
Reconstitute
probes and

deliver to prober

SENDER RECEIVER
Network

(ii)
Packet train that is
fully piggybacked

MGRP
IP

Probe
FRAG

MGRP
IP

Probe
FRAG
TCP

(iii)
The final fragment of
the last piggybacked

TCP packet

2a2b

MGRP
IP

Probe
MGRP

IP

Probe
MGRP

IP

Probe

4b
TCP

MGRP
IP

MGRP
IP

Probe
FRAG
TCP
3a 1

FRAG

3b

Figure 2: A step-by-step example to demonstrate MGRP operation. Measurement tools generate probes,
which MGRP combines with TCP (or UDP) packets sent by applications. Depending on the timing, MGRP
packets can contain (i) probes that are partially reused by full payload packets, (ii) probes that are fully
reused by payload fragments, (iii) final payload fragments when MGRP has no more probes to send. The
combined packets are demultiplexed at the receiver.

sender, along with any extra padding that was specified.
Both the sender timestamp (implemented by MGRP) and
the receiver timestamp (extracted from the kernel using the
same mechanism as SO_TIMESTAMP) are provided as ancillary
data. The tool uses this information to compute its results.

Though simple, this API is sufficiently flexible to imple-
ment the key building blocks—including single-packet probes,
back-to-back packet pairs, and packet trains with arbitrary
inter-packet spacing—of many existing measurement algo-
rithms [5, 6, 12, 15]. We have adapted three measurement
tools to use the Probe API: pathload [14] and pathchirp [23],
which measure available bandwidth, and badabing [28], a
tool that measures path loss. In all three cases, changes to
the tools were minimal.

2.2 Basic Operation
MGRP’s implementation of probe transactions is visual-

ized in Figure 2. Once a probe transaction is fully submitted
1©, MGRP attempts to fill the empty padding in each probe
with rider packets drawn from application traffic bound for
the same destination 2©. For example, in our scenario from
the Introduction, an application may be streaming media
data to some destination D while an active measurement
tool (such as our MGRP-adapted pathload) is used to probe
the available bandwidth along the same path. Once any rid-
ers are piggybacked 3©, MGRP stores the kernel timestamp
in the MGRP header and hands the packet to the IP layer
for transmission 4©.

In our implementation, we modified the TCP stack to pass
its outbound traffic to MGRP for potential piggybacking.
Applications can use setsockopt to set which packets may
be piggybacked. MGRP buffers potential riders for a fixed
duration to increase the chances for successful piggybacking.
If no riders are available, a probe is simply sent with empty
padding (as in the first two probes of (i)). Any buffered
application frames not piggybacked are sent normally.

Given a probe packet and a rider to piggyback, MGRP
tries to fit the rider inside the probe’s padding as follows.

If the rider is smaller than the padding, piggybacking is
straightforward (probe labeled 1 in (i)). If the rider is larger
than the padding, MGRP fragments the rider into two chunks,
piggybacking a padding-sized chunk in the probe and re-
queuing the remainder for further piggybacking. We use a
simple, custom fragmentation/reassembly protocol similar
to IP fragmentation to manage fragmented chunks.2 In the
figure we can see that probe packets in (ii) carry a single,
fragmented TCP segment, whose chunks are labeled 2a and
2b. If MGRP cannot piggyback an entire rider before the
buffer timeout, MGRP simply sends the chunk in its own
MGRP packet, shown as (iii) in the figure. For simplicity
we currently piggyback at most one rider per probe.

As probe packets are received at the destination 5©, MGRP
extracts any piggybacked riders from the probes 6©. It then
queues fragments for reassembly and immediately delivers
complete TCP segments to the application 7©. After ex-
tracting any piggybacked data, MGRP zeroes the padding
and queues probes for delivery to the measurement socket
8©. When the measurement tool retrieves the probe, it can
retrieve the sender’s and receiver’s timestamps as ancillary
data.

From this description we can see three main benefits to our
kernel-based implementation. First, since all transmissions
go through the kernel, MGRP can piggyback data from any
number of applications on top of a probe train so long as it
shares the train’s destination. Second, applications require
essentially no modification to donate their packets, while
measurement tools require only modest changes. Finally,
since we avoid crossing the user-kernel boundary for every
probe, the inter-probe gaps can be generated with microsec-
ond precision and low overhead using the high resolution

2Another approach we tried was to generate and add a new
TCP header to each TCP chunk, which turned each chunk
into a valid TCP segment. However, this approach turned
a stream of MSS-sized segments into a stream of very small
TCP segments (tinygrams) that interacted poorly with the
ACK clocking and congestion window scaling mechanisms.

281

timers in the kernel. Other measurement services that per-
form a subset of MGRP services are also implemented as
kernel modules, including MAD [27] and Periscope [9].

The main disadvantage of a kernel implementation is that
it is harder to deploy, since it is OS-specific. We also consid-
ered implementing MGRP as a library that hijacked the var-
ious socket calls to implement Probe API extensions. This
approach would be quicker to deploy, but lacks the first and
third advantages of the kernel approach, making it less accu-
rate and less efficient. Moreover, because piggybacking can
only occur within the same application, more intrusive ap-
plication modifications would be required (e.g., by managing
a pathload-like service in a separate thread), making the ap-
proach less modular. One way to address this last problem
is to redirect application data to a separate MGRP daemon,
either via interprocess communication (IPC) through a hi-
jacked socket interface, or via something like /dev/tun for IP
tunnelling. While this approach could regain the advantage
of modularity, it is still likely to be inefficient and less ac-
curate. We spent significant effort attempting to implement
the IPC-based approach but ultimately found it to be slow,
cumbersome, and less accurate for want of high-resolution
timers. Most importantly, by using high-resolution timers
we ensure that TCP ACK clocking is maintained during nor-
mal transmission; earlier implementations with 10 ms timers
performed poorly. Nevertheless, if deployability is the chief
concern, a library-based implementation could work in some
circumstances; our positive results concerning piggybacking
suggest that such an implementation could be worthwhile.

2.3 Effects on Application Data
Piggybacking data packets within probes can reduce the

number of packets and bytes sent across the network, com-
pared to sending probes and application data separately. In
the best case, this savings is enough to eliminate probe-
induced congestion along the path, thus avoiding disruptive
packet drops of source traffic, cross traffic, and measurement
probes. Our experimental results show that this reduction
in loss rates often leads to better application throughput, is
more fair to cross traffic, and reduces the time required to
complete measurements.

A potential drawback of piggybacking is that, while it can
reduce the total number of lost packets, it can increase the
chances that a lost packet contains application data. Ob-
serve that piggybacked application data is sent at the rate of
the probes on which it piggybacks. Since measurement tools
often send bursts of probes of high instantaneous bandwidth,
these bursts are more likely to induce loss. If the probe
burst rate is higher than the normal application data rate,
then any lost packet is more likely to contain application
data. For example, suppose that we send 10 probes per ms,
while the application sends roughly 2 padding-sized pack-
ets per ms. With a 5-ms buffering timeout, we will buffer
10 application packets and can completely fill the probes’
payloads. If we did not use MGRP at all, we would send
12 total packets—two application packets, and ten probes.
While the chances of some lost packet may be greater in the
second case, the chances of a lost application packet may
actually be greater in the first case.

When a data packet loss occurs, MGRP can magnify the
negative consequences of the loss because buffering increases
the effective round trip time (RTT) for the application pack-
ets. While this additional latency is not necessarily a prob-

lem in and of itself, an increased RTT affects how TCP
responds to packet losses, making it slower to increase the
congestion window. So while longer buffering timeouts can
reduce the total number of packet drops (by increasing pig-
gybacking), they also delay TCP’s response to packet losses
(because buffering increases the RTT).

We address both problems by choosing a relatively small
buffering delay, to balance the positive effects of increased
piggybacking with the negative effects of the higher proba-
bility for packet loss. We have found that 5 or 10 ms is suffi-
cient to buffer substantial amounts of data without harming
TCP’s responsiveness when dealing with typical wide-area
RTTs of 40 ms or more [4].

In addition, we have found that carefully choosing which
probes to use for piggybacking can positively impact perfor-
mance. For example, pathload begins a measurement ses-
sion by sending a burst of 100 packets back-to-back. If there
is any congestion, the packets toward the end of this burst
(and any packets that might follow it) are more likely to
be dropped. If we selectively piggyback on only the first
n probes of the burst, then if probes m > n are dropped,
no data packets will be dropped with them. The MGRP
module could use external information to determine a suit-
able n automatically; e.g., a small TCP congestion window
for a piggybacked data stream suggests the path is highly
contended, increasing the likelihood of loss events.

2.4 Effects on Measurement Tools
By reducing the contention for a shared path, MGRP pig-

gybacking allows a measurement tool to send traffic more
aggressively, converge more quickly and/or provide more ac-
curate results. Thus applications using these tools are better
informed and can provide better quality of service.

However, when using MGRP, tools may need to be modi-
fied to account for piggybacked traffic. Normally, local traf-
fic will be interspersed with the tool’s probes, thereby affect-
ing probe latency or queuing behavior. When piggybacking,
MGRP removes some of this traffic from consideration, thus
affecting a tool’s calculation. Indeed, we have observed that
without correction, available bandwidth tools will overesti-
mate the available bandwidth when there is significant pig-
gybacking.

To take the effects of piggybacking into account, tools
can query MGRP via an ioctl call to learn piggybacking-
relevant characteristics of the most recent probe transaction.
In particular, a probe sender can query MGRP to learn:
(a) how long it took the tool to queue probes to MGRP
and how long it took MGRP to transmit the entire probe
train, useful for verifying timing accuracy; (b) the number
of probes and bytes that were piggybacked but would have
competed with the probe train if MGRP were not enabled,
useful for compensating for hidden data traffic in bandwidth
estimates; and (c) the total number of probes that carried
piggybacked data and the total number of bytes that were
piggybacked across all probes, useful for gauging the actual
overhead of the measurement tool.

To see how this information can be used to adjust an es-
timate, consider our MGRP-adapted pathload. Pathload
estimates available bandwidth by trying to find the highest
rate at which it can send data without observed conges-
tion. To do this, pathload sends probe trains from source to
destination in several rounds, where each train consists of
100 probes that are equally sized and equally spaced. After

282

Figure 3: Adjusting pathload estimates for piggybacking (rate limited TCP source traffic with UDP and TCP cross traffic)

each round of probing, pathload uses the relative difference
in the arrival times of probe packets to determine whether
the network can support the current probe rate or whether
there were queuing-induced delays. It uses this information
to drive a kind of binary search toward the highest sustain-
able probing rate. Once it reaches this point, it computes
a bandwidth estimate based on the rate of the final train.
Note that if the network is highly saturated or the available
bandwidth is highly variable, pathload may fail to converge
to a fixed point and will simply time out.

Our modified pathload adjusts its estimates to account
for piggybacking as follows. After each train the pathload
sender uses the MGRP ioctl interface to retrieve the num-
ber of piggybacked application bytes that would have com-
peted with the probes for the duration of the train, and
sends this information to the receiver over pathload’s con-
trol channel. When computing its estimate based on the
last train, the receiver uses this information to compute the
bandwidth consumed by the application’s competing traf-
fic, and subtracts it from the estimate. The approach works
well. Figure 3 shows three time series plots that illustrate
that the actual available bandwidth (red line) is estimated
accurately by the adjusted pathload (green ×s), but overes-
timated by unadjusted pathload (blue +s).

3. MEDIANET AND THE
MEASUREMENT OVERLAY

To demonstrate MGRP’s benefit to applications, we used
it to perform active measurements to improve the functional-
ity of MediaNet [11], an overlay that delivers media streams.
We first present some background on MediaNet, and then
describe how we changed it to make use of a custom Mea-
surement Overlay that actively measures the network while
transparently making use of MediaNet’s traffic.

3.1 MediaNet
MediaNet [11] is an overlay that aims to provide adap-

tive, user-specified quality-of-service guarantees for media
streams. When requesting a streaming service, a participant
specifies a series of preferred adaptations to use when avail-
able bandwidth is low. For example, the stream could be
transcoded to use smaller frames or a lower-fidelity CODEC.
Overlay node daemons, termed local schedulers (LS), ap-
ply any adaptations while forwarding traffic via TCP con-
nections between nodes. The delivery path of a particu-
lar stream through the overlay, and any adaptations per-
formed along that path, are determined by the MediaNet
global scheduler (GS). The GS uses a simulated annealing
algorithm that takes into account user preferences and cur-
rent network conditions to configure the overlay to provide
the highest possible utility to each user. In the best case,
all users will receive their top preference, but if resources
become scarce, some streams may be downgraded.

MediaNet uses purely passive measurement. Each LS pe-
riodically reports the rate at which it is sending application
data to neighboring nodes. If congestion on a virtual link
prevents an LS from sending at its preferred rate (beyond
reasonable buffering), it alerts the GS of the rate it can
actually achieve. The GS adjusts its view of the network
accordingly, which may precipitate a reconfiguration, e.g.,
by rerouting a stream or by deploying an adaptation.

The problem with this passive approach is that under nor-
mal conditions it can only provide a lower bound on the
bandwidth available on an in-use virtual link, and says noth-
ing about the bandwidth available on a currently-unused
link. Once MediaNet has lowered a stream’s rate, the GS
cannot tell when additional bandwidth becomes available,
and so a user’s utility may be kept lower than necessary
once network conditions change (see Figure 17).3

3.2 Active Measurement Overlay
Remedying MediaNet’s problems requires active measure-

ment of both in-use links and currently-unused links to de-
termine their available bandwidth. Then MediaNet can re-
route paths and retract fidelity-reducing adaptations more
effectively since it will have better, more up-to-date infor-
mation about all its links.

With MGRP, such active measurements are made more
efficient for in-use links by piggybacking on MediaNet traf-
fic. To minimize modifications to MediaNet itself, we built
a Measurement Overlay (MO) network that performs active
measurements between its nodes. Currently, our implemen-
tation uses pathload to measure links’ available bandwidth.
By configuring the MO to mirror the structure of the Media-
Net overlay (Figure 15 in Section 5), probe traffic from the
MO can transparently piggyback MediaNet traffic when it is
available. We modified MediaNet’s GS to periodically query
the MO to acquire per-link statistics for every link it needs
to monitor; the LSes required no changes at all. These per-
link active measurements complement the existing LS re-
ports. Experimental results presented in Section 5 demon-
strate these benefits: the GS can react quickly to reports
of loss passively measured by the LSes, and safely increase
the streaming rates when the MO reports higher available
bandwidth. We also show that MGRP makes such available
bandwidth estimates more efficient and more timely.

While we developed the MO for use with MediaNet, it
demonstrates the modularity advantages afforded by MGRP.
Any overlay/P2P network that has interest in measuring its
active and inactive links can be set up alongside an MO,
and thus receive timely and efficient estimates. Indeed, traf-
fic from several overlay networks could be piggybacked on
a single series of measurement probes, further improving

3Skype’s algorithm for detecting additional bandwidth suf-
fers a similar problem, and leaves sessions degraded longer
than necessary [3].

283

the measurements’ efficiency, without requiring any serious
changes to the client overlay networks themselves. More-
over, decoupling the MO from its clients allows both to
evolve independently. For example, as new measurement
algorithms are developed, they can be incorporated into the
MO and clients of the MO can immediately take advantage
of them. Using the MGRP ioctl interface to assess the
availability of data for piggybacking, the MO can be selective
about which algorithms it uses to impose the least overhead.
We envision an MGRP-enabled measurement substrate that
provides modular, scalable, and efficient services to a wide
variety of applications.

4. MICROBENCHMARK EXPERIMENTS
To understand the costs and benefits of MGRP, we first

tested its performance with a series of microbenchmarks.
The microbenchmarks provide us with a consistent data
stream, cross traffic and number of measurement probes,
allowing us to evaluate each MGRP parameter separately
without having to factor in the effects of MediaNet rate
changes. Using the insight gained from the microbench-
marks, we then implemented the Measurement Overlay and
used it to improve the performance of MediaNet, presented
in Section 5.

4.1 Experimental Setup
Our network topology and experimental parameters are

shown in Figure 4. Source traffic is transmitted from m3
to m5, with varying amount of cross traffic sent from c1 to
c2 across the bottleneck link x1-x2 which is shared with the
source and probe traffic. We discuss each experimental vari-
able in detail below. For each combination of variable values,
we perform four 300-second runs, discarding any runs that
did not complete due to experiment error. We measure the
throughput of the source, cross, and probe traffic at the bot-
tleneck link—i.e., after any losses have occurred—over one
second intervals. When running pathload, we also measure
how long it takes pathload to produce an estimate. Ideally,
MGRP will improve the throughput of the source and cross
traffic by reducing the amount of measurement traffic, and
reduce the pathload completion times since we can now send
probes more aggressively using mostly application traffic.

We ran the experiments on Emulab [34], using pc3000
hosts connected via 100 Mbps Ethernet. We shape the x1-x2
bottleneck link using the FreeBSD Dummynet [24], limiting
the link speed to 10Mbps (typical for a fiber-at-home user)
and fixing the round-trip latency at 40 ms.4 Dabek et al. [4]
report that the median RTT between PlanetLab nodes is 76
ms, and between DNS servers worldwide the median RTT
is 159 ms. Since higher RTTs lessen the penalty of MGRP’s
buffering delay, we present all results using a relatively low
RTT of 40 ms. This is roughly the RTT between Washing-
ton, D.C. and Kansas City, MO.

Source traffic.We use nuttcp [7] to emulate a media stream
by generating a TCP stream with a constant rate of 4 Mbps
from m3 to m5. We chose 4 Mbps as the stream rate since

4Separate experiments with a wider range of RTTs (avail-
able in [18]) show that MGRP provides even greater bene-
fits at higher RTTs. With no link delay, MGRP performs
slightly worse than without (bulk transfer rates are 3-5%
lower), since TCP recovery is delayed by the MGRP buffer.

x1 x2

c1 c2
UDP or TCP
cross traffic

m3 m5

app

prober
rcv

app

prober
snd

Variable Values

Source (m3–m5) 4 Mbps TCP
Probe (m3–m5) Pathload: pFAST, pSLOW

Traffic: Synthetic: pk1,pk2,pk3 (Tab. 1)
Cross (c1–c2) STEP (UDP)

(Fig. 5) WEB (TCP)
MGRP Off (mgrpOFF)

On, 10 ms buffer (mgrp10)

Figure 4: Topology and experimental parameters

this is the rate of high-definition streams for Apple TV and
many other Internet video services [21]. We chose TCP as
the transport protocol to emulate the use of Adobe’s Real
Time Messaging Protocol (RTMP) [22] and to also deter-
mine whether the buffering and time-shifting of TCP seg-
ments causes adverse effects (for example, due to changes to
ACK clocking).

Probe Traffic.We considered two kinds of probe traffic:
actual measurement traffic using two variants of pathload,
and synthetic traffic meant to emulate a range of other tools
and scenarios.

Pathload is the gold standard of available bandwidth tools,
as it is both robust and fairly accurate [26, 30]. Pathload
produces simple packet trains with uniform gaps, and uses
more bandwidth than other tools (approximately 5–10% of
the residual bandwidth in our experiments), which gave us
an opportunity to test probe reuse in a non-trivial way.

As we show in Section 4.2, the original pathload is some-
times slow to return results. We found that between each
train, the pathload implementation waits RTT+9∗TXtrain ,
where TXtrain is the amount of time it takes to transmit
one train. In an effort to increase the number of mea-
surement rounds performed by pathload, we modified path-
load to reduce this pause between trains to one RTT, which
matches the description in the original pathload paper [14].
We call this more aggressive version pFAST, and the origi-
nal implementation pSLOW in our experimental results. The
main difference between the two is that pFAST sends probe
trains more frequently (increasing the average probe rate)
and therefore reaches an estimate more quickly.

One feature of pathload that is good for normal use, but
poor for repeatability and for our MGRP evaluation, is that
it responds to the conditions of the network by fluctuating
the amount of probe traffic. This adaptive behavior makes
it more difficult to distinguish between the effects of MGRP
and the effects of pathload’s implementation. Therefore, we
also generate probes using our own tool called pktrain that
sends custom packet trains that do not change size or rate
based on network conditions. In doing so, we demonstrate
that MGRP makes it practical to use more aggressive mea-
surement tools with higher probe rates.

In our experiments we use three different packet trains,
each with different size, timing, and transmission rates, as
shown in Table 1. Note that all of the packet trains are rel-

284

pk1 pk2 pk3
probe size (bytes) 300 500 300

probes/train 10 20 10
probe gap (usec) 200 1000 0
train gap (msec) 20 20 10

inst. throughput (Mbps) 12.0 4.0 line rate
avg. throughput (Mbps) 1.1 2.0 2.3

Table 1: Parameters for packet train experiments

atively short (10-20 packets). Each train type demonstrates
different likely probing scenarios: pk1 has a relatively high
burst rate (12.0 Mbps) but low average rate (1.1 Mbps),
and its ten-packet bursts approximate the sub-trains over
which pathload calculates changes in one-way delay; pk2
has longer 20-packet trains at lower rates (4.0 Mbps), but
a higher overall rate (2.0 Mbps) demonstrating that more
aggressive probing is feasible with MGRP; pk3 is similar to
capacity estimators such as pathrate, and transmits 10 pack-
ets back-to-back with an average probing rate of 2.3 Mbps.

Cross traffic.We generate two types of cross traffic be-
tween c1 and c2, shown in Figure 5: STEP and WEB.5

STEP cross traffic is stepwise UDP. We use tcpreplay [32]
to replay a snapshot of a 150 Mbps trans-Pacific Internet
link [31] at fixed-rate intervals lasting 45 seconds each (1, 3,
5, 6, 4, 2 Mbps). Using this UDP-based cross traffic, we can
consider the effects of piggybacking on source traffic without
having to factor in the cross traffic’s response to induced
congestion. Replaying a trace permits us to test against
actual Internet packet size distributions and interleavings,
but without cross-traffic congestion avoidance, and at rates
that are stationary over a reasonable period of time [35].

WEB cross traffic is generated using the NTools [33] suite
to generate up to ten concurrent TCP connections, which
models web traffic using Poisson-distributed interarrival rates
over 5-second intervals. Like the source, each TCP flow
performs normal CUBIC congestion control. The flow size
varies between 64 KB and 5 MB, and is weighted toward
flows in the 64-200 KB range. The initial seed to the gen-
erator is fixed to provide consistent (though not identical)
behavior between runs.

4.2 Results
The results of our experiments demonstrate that using

MGRP leads to better application throughput, is fair to
cross traffic, and reduces the time to complete pathload
measurements. MGRP also makes it possible to measure
at more aggressive rates without adversely affecting applica-
tion traffic. On the other hand, highly-variable cross traffic
(i.e., for the WEB experiment) in combination with bursty
probe trains may increase source packet losses (as discussed
in Section 2.3) unless we add more intelligence to MGRP to
perform selective piggybacking as we discuss in Section 4.2.2.

4.2.1 STEP Experiment
The STEP experiment demonstrates all the potential ben-

efits of MGRP. First, MGRP is able to piggyback signifi-
cant amounts of application data, nearly eliminating probing
overhead in almost all cases. As an example, Figure 6, plots
a single run using pk2 traffic—notice that the bottom plot

5Additional results with other cross traffic patterns are avail-
able in [18].

Figure 5: Cross traffic for Microbenchmarks

Figure 6: STEP: Timeseries plot with pk2 probes

Figure 7: STEP: Timeseries plot with pFAST probes

has almost no black band, as piggybacking absorbs the over-
head of probe traffic into the data traffic—and in Figure 7,
showing the minor probing overhead when using MGRP
with pFAST. Figure 8 shows the average per-second through-
put of each kind of traffic for all runs. Probe-only traffic
appears as a black bar, and riders (“source/probe (pbk)”)
contribute to the source throughput. The overhead of pig-
gybacked probe headers is included with “probe (nopbk),”
and is minuscule for most experiments with MGRP enabled.

Second, MGRP “smooths out” source traffic because it
competes less with probe traffic. This effect can be seen
in the time series plots mentioned above, and also in Fig-
ure 9, which shows the CDF of the source traffic throughput
measured in one-second intervals, for different kinds of mea-
surement traffic. Ideally, the CDF of our 4 Mbps source traf-
fic would be a vertical line at 4 Mbps, indicating that the
application was able to sustain its desired rate during the
entire experiment. Any fluctuation below that rate (to the

285

 0

 2

 4

 6

 8

 10

mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10

M
bp

s
at

 b
ot

tle
ne

ck
pk1 pk2 pk3 pFASTpSLOW

cross
src/probe (pbk)
src (nopbk)
probe (nopbk)
available

Figure 8: STEP: Average of per-second throughputs. Each
pair of bars represents a different type of probe traffic.

left) is compensated for by a later return to higher through-
puts in slow-start (to the right) when TCP is finally able to
send queued application traffic. Without MGRP, the source
rates for pSLOW and pFAST are comparable (not shown), but
at higher probing rates used in packet trains pk1, pk2, and
pk3, MGRP exhibits a significant improvement.

Third, MGRP imposes no adverse effect on UDP cross
traffic, which sustains the requested rates with minimal losses.
This is clear from Figure 8—the cross traffic portion is fixed
for all runs.

Finally, MGRP allows pathload to complete its measure-
ments more quickly, because there is less contention for the
link. This can be seen in the CDF plots of pSLOW and pFAST

completion times, shown in Figure 10. With MGRP, 50%
of pSLOW measurements complete within 30.7 seconds, but
without it, only 26% complete within that time and 48%
fail to complete at all (we time out pathload rounds after 60
seconds). Thus MGRP leads to more measurement rounds
that take less time to complete, without penalizing source
or cross traffic.

4.2.2 WEB Experiment
As in other experiments, mgrp10 greatly improves the time

it takes for a measurement to complete (Figure 11). With
mgrp10, pFAST measurements complete 20-25% faster at each
of the 25th, 50th, and 75th percentiles, with even more sig-
nificant improvements for pSLOW. Average pathload probing
rates are also 20-25% higher with MGRP.

The WEB cross traffic is TCP, so we may expect that
in the presence of probing traffic with high burst rates, the
cross traffic suffers. However, because cross traffic is bursty,
with idle periods, we find that its average throughput is
largely unaffected, with or without MGRP, as seen in Fig-
ure 13. So the average per-second throughput is roughly
the same with both MGRP on and off, with the synthetic
packet trains having slightly better CDF distributions than
mgrpOFF (not shown).

However, as can be seen in Figure 12, the source fares
less well with MGRP and pFAST (right plot) when we look
at the distribution of source throughput: over 40% of the
time, the application is unable to sustain its target rate of
4 Mbps, but without MGRP the application pays a penalty
only 20% of the time. With pSLOW (left plot), the MGRP
penalty is less severe but still exists.

The reason for this is that pathload is adaptive. During its
runs, if earlier trains experience few delays or losses, path-
load increases the rate of subsequent trains. However, since
the WEB cross traffic is highly variable (Figure 5), pathload

Figure 9: STEP: CDFs of source throughputs while running
packet train probes pk1, pk2, pk3

Figure 10: STEP: CDFs of pathload completion times.

Figure 11: WEB: CDFs of pathload completion times.

Figure 12: WEB: CDFs of source throughput with pathload.

is often too aggressive in increasing its rates, so that higher-
rate trains are transmitted into a more congested network.
As discussed in Section 2.3, while piggybacking can reduce
the total number of lost packets, it can increase the chances
that a lost packet contains application data. In particular,
buffered source traffic is piggybacked onto high-rate, risky
probe packets, increasing the chances for loss.

We can see this effect in the bottom plot of Figure 14,
which displays a dot for each pathload probe. Each large
grey rectangle shows a complete pathload measurement con-
sisting of many probe rounds. Successful probes are light
grey, dropped probes without riders (nopbk) are medium
grey, and dropped probes with riders (pbk) are black. These
black dots are application data losses, and cause TCP con-
gestion avoidance to kick in, lowering throughput and in-
creasing latency. As is apparent from the plot, source losses
are highly correlated in particular probe trains (those at
higher rates). They also tend to fall toward the end of
probe trains (higher sequence numbers), when the bottle-
neck queue is already full of earlier probes and cross traffic.

We experimented with two approaches to avoid this prob-
lem: making the measurement tool piggybacking-aware, and
using an MGRP regulator to limit the piggybacked probes.

In the first case, we modified pathload to selectively en-

286

 0

 2

 4

 6

 8

 10

mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10
mgrpOFF

mgrp10

M
bp

s
at

 b
ot

tle
ne

ck
pk1 pk2 pk3 pFASTpSLOW

cross
src/probe (pbk)
src (nopbk)
probe (nopbk)
available

Figure 13: WEB: Average of per-second throughputs . Each
pair of bars represents a different type of probe traffic.

able piggybacking on probes (via the Probe API) rather than
blindly setting the piggybacking flag in the call to sendmsg()

(Section 2.1). Our modified version (run in all experiments
with MGRP on) disabled piggybacking during the initial
“testing the waters”phase when pathload sends several high-
rate bursts. We also considered having pathload avoid pig-
gybacking on trains that are on the high side of its binary
search [14], or selectively piggybacking only the first portion
of those higher-rate trains, but implemented a more general
solution instead.

In the second case, we added policy tuning knobs inside
MGRP. One knob controls the maximum percentage of a
train that MGRP will add riders to. By reducing the amount
of the probe train that can carry riders, we trade off data loss
in probe trains against the added congestion of competing
traffic. Piggybacking on the first 50% of the train seems to
improve measurement times while having a minor additional
impact on source traffic. However, such a one-size-fits-all
piggybacking percentage is probably not the best approach,
since shorter probe trains (10-20 packets) will probably pay
too high a penalty. The MGRP regulator could instead fix
a number of probes it is willing to permit riders on (say,
50 consecutive probes in a transaction, rather than 50%),
or calculate the number based on a TCP source’s current
congestion window.

We considered duplication-based mechanisms as well. Per-
mitting data packets to transmit normally even when they
have already been piggybacked on probes, removes the shared
fate problem and gives each data packet two opportunities
to reach the destination. Experiments showed such dupli-
cation does not reduce congestion and so does not perform
as well. We considered duplicating data packets carried in a
probe train, similar to Skype’s behavior [1]. Since any un-
used padding is wasted network bandwidth, after a certain
threshold we could simply repeat the data packets within the
probe train and de-duplicate them at the MGRP receiver,
but we have not implemented this.

5. MEDIANET EXPERIMENTS
To demonstrate how MediaNet can benefit from integra-

tion with MGRP we performed two groups of experiments
considering: (a) the original MediaNet with only passive
observations from the Local Schedulers, and (b) MediaNet
integrated with a separate Measurement Overlay providing
available bandwidth estimates to the Global Scheduler as de-
scribed in Section 3, both with MGRP and without MGRP.
We find that MediaNet’s performance is improved by active
measurement, and improves yet further when using MGRP.

Figure 14: Effect of the piggybacking ratio on losses of
the source traffic. The top figure shows 100% piggybacking
and the middle shows 50% piggybacking. The bottom figure
shows the losses inside the packet trains for the 50% case.

5.1 Experimental Setup
We use the network configuration shown in Figure 15.

One local scheduler runs on each of the forwarder nodes
(m3, m5) and the global scheduler runs on a separate node.
In our enhanced version the Measurement Overlay also runs
between m3 and m5, and the GS queries it for available
bandwidth between those nodes.

Frame
Type

Average
Size (B)

Frequency
(Hz)

Add’l BW
(Kbps)

I 13500 2 216
P 7625 8 488
B 2850 20 456

Table 2: MPEG frame distribution

Source traffic.For source traffic, we loop three MPEG
video streams. The MPEG streams consist of three frame
types, I, P, and B (in order of importance). Lower-fidelity
versions of a stream can be easily constructed by selectively
dropping just the B frames, or the B and P frames. For
our experiments, clients requested a particular stream and
specified as adaptations either dropping just B frames (first
choice), or dropping both P and B frames (second choice).
For our particular source stream, the frequency and rates
of these frames are shown in Table 2. Thus the full stream
requires 1160 Kbps, while sending only I and P frames re-
quires about 704 Kbps, and sending only I frames requires
216 Kbps. Since the experimental network permits only
one path between the source and destination, all adapta-
tion takes place by dropping frames, rather than rerouting.
MediaNet drops frames as early as possible to avoid wasted
bandwidth; in this case they are dropped at the sender.

287

experiment runs sec Mbps inc. over
mgrpOFF

inc. over
original

fps inc. over
mgrpOFF

inc. over
original

mgrpOFF.pOFF 14 337 1.84 30.11

mgrpOFF.pSLOW 22 336 1.96 6.29% 39.58 31.44%
mgrp10.pSLOW 32 336 2.05 4.40% 11.21% 43.42 9.69% 44.19%

mgrpOFF.pFAST 10 335 1.86 0.94% 39.10 29.87%
mgrp10.pFAST 22 336 2.28 22.52% 23.86% 52.08 33.19% 72.96%

Table 3: Increase of MPEG streaming rate with MGRP

x1 x2

c1 c2UDP or TCP
cross traffic

m3 m5

Estimator
Overlay

pathload

MediaNet
Local Scheduler

MediaNet
Local Scheduler

Three MPEG Streams

Estimator
Overlay

pathload

probes

MediaNet
Global Scheduler

Queries for
available bandwidth

measurement

Figure 15: MediaNet experiment topology

Figure 16: Cross traffic for MediaNet experiments

Cross traffic.Like our microbenchmarks, the MediaNet
streams share the bottleneck link (x1x2) with cross traffic
from c1 to c2. UDP cross traffic follows the PEAKS pat-
tern shown in Figure 16, which adjusts the bandwidth in
a stepwise fashion for 240 seconds using fixed-rate variable-
duration intervals (4, 8, 4, 7, 4, 8, 4 Mbps). This creates
multiple periods for MediaNet to increase its transmission
rates, followed by periods of low available bandwidth.

5.2 Results
Table 3 summarizes the overall performance of MediaNet

in the five different modes of operation: the original Media-
Net without active measurement (mgrpOFF.pOFF, row 1),
MediaNet with the original pSLOW pathload implementation
(mgrpOFF.pSLOW and mgrp10.pSLOW, rows 2-3), and Media-
Net using our more aggressive version of pFAST pathload
(mgrpOFF.pFAST and mgrp10.pFAST, rows 4-5).

Results are collected from multiple runs (column 2) with
the same average duration (column 3). To compute aver-
ages, we concatenate all runs of an experiment together and
divide by the total number of seconds. The average to-
tal streaming rate for all three streams (Mbps, column 4)
is the sum of the sizes of correctly decoded frames across
all runs and divided by the total number of seconds. Col-
umn 5 presents the relative percentage improvement of using
MGRP (rows 3 and 5) over not using it (rows 2 and 4, respec-
tively). Column 6 presents the improvement of using active
measurement at all (rows 2–5) over the original Medianet,
which lacks active measurement (row 1). Notably, compared
to active measurement without MGRP (mgrpOFF), MGRP
improves the aggregate streaming rate by 4.4% when using
pSLOW measurements and 22.5% for pFAST.

The average successful frame rate (column 7) is calculated
by dividing the number of successfully decoded frames by the
total number of seconds. Columns 8 and 9 report relative
improvements, as above. It is obvious that MediaNet gains
by using active measurement; even without MGRP there
is a 31.44% increase in frame rate (39.58 fps vs. 30.11 fps
for the original MediaNet). With MGRP, stream quality
is even better—compared to mgrpOFF, mgrp10 improves the
frame rate by 9.69% for pSLOW (43.42 fps vs. 39.58 fps) and
33.19% for pFAST (52.08 fps vs. 39.10 fps)6.

Note that without MGRP (rows 2 and 4), MediaNet is
better off using the pSLOW measurements, even though they
take longer to complete and sometimes do not converge.
Without MGRP, the more aggressive pFAST scheme causes
too many losses to data packets. With MGRP, more aggres-
sive measurements are possible, leading directly to better
application performance.

Medianet Plots.Figures 17, 18, and 19 each show a sin-
gle run that illustrates the quality of service improvements
shown in the table as a result of (1) incorporating active
measurements using pathload (Figure 18), and additionally
(2) using pathload with MGRP (Figure 19). All plots have
time on the x-axis and depict 400 seconds of an experiment
run that we have found to be representative of the many
runs we considered.

The top of Figure 17 shows MediaNet’s view of the avail-
able bandwidth on the network path between m3 and m5
in the presence of PEAKS traffic. The long horizontal blue
line represents the amount of bandwidth that the MediaNet
GS thinks is available. During reconfigurations, MediaNet
ensures that the adapted media streaming rates combine
to be less than the known available bandwidth. The gray
shaded area indicates the actual available bandwidth, which
is computed by subtracting the bottleneck traffic (the cross
traffic and MediaNet streams) from the x1x2 link capacity
(10 Mbps).

The MediaNet GS adjusts its available bandwidth esti-
mate every time it receives a report. The original Media-
Net relies solely on LS reports of frame decoding failures
or excessive delay, and receives no information from active
measurement tools.

The bottom of Figure 17 shows the per-second frame rate
for the same run, with the y-axis representing the total num-
ber of frames per second decoded by the receiver for each of
the three media streams. The first media stream is on the
bottom in blue, with the 2nd and 3rd streams stacked on
top of it in green and red (note the difference in y-axis from
the top plot). After an initial setup period (also present
in Figure 18 and most other runs), by time 1220 all three

6The increase in frame rate is higher than the increase in
bandwidth because the additional frames are smaller in size,
due to compression.

288

Figure 17: Original MediaNet (no active measurement)

Figure 18: MediaNet with pFAST

Figure 19: MediaNet with pFAST over MGRP

streams are received at their full rate. Once the cross traffic
fills the available bandwidth around time 1270, MediaNet
attempts to sustain the high rates, and finally drops stream
1 to medium rate (I and P frames) and streams 2 and 3
to low rate (I frames only). Since MediaNet is unaware of
additional available bandwidth, it does not increase its rate.

In Figures 18 and 19 the Medianet GS is informed by
regular estimates from pFAST pathload (green X’s). With
MGRP (Figure 19), MediaNet receives such estimates more
often, and consequently follows the actual available band-
width more closely and in a more timely manner. This en-
ables MediaNet to take advantage of periods of increased
bandwidth that are between congested periods, and bump
all the streaming rates to high, which occurs in the periods

at [1325,1350] and [1400,1425] in Figure 19. For the same
time periods in the non-MGRP case (Figure 18) the stream-
ing rates remain at medium. However, when the available
bandwidth changes during a pathload run, pathload time-
outs can occur with MGRP too, which is the reason why
MediaNet did not upgrade the streams earlier in the period
[1300,1350]. But it still outperforms the non-MGRP case.

6. RELATED WORK
MGRP is similar to a number of measurement services

(Periscope [9], Scriptroute [29], pktd [8], precision prob-
ing [20], and MAD [27]) in that it provides a service to
specify and schedule network measurements. MGRP differs
from these in being the first fully implemented and usable
service that fills empty probe padding with useful payload to
reduce measurement overhead. We previously proposed the
idea of seamlessly combining active probes with application
data [19]; this earlier work had no kernel implementation
and lacked real experimental evaluation.

MGRP’s Probe API seems to be sufficient to implement
the probing algorithms of many other measurement tools—
including pathchar [6], pathrate [5], pathneck [12], and path-
var [15]. MGRP currently does not provide support for
probes sent over ICMP, or for TTL-limited probes, but we
believe we could add this support without difficulty.

Sidecar reuses existing TCP connections for measurement
by reinjecting previously transmitted TCP segments to probe
the network [25]. Doing so has the benefit that probes travel
the same path as an actual TCP connection, so they can
traverse NATs and firewalls without creating abuse reports.
But Sidecar does not reduce congestion or make probe traf-
fic less wasteful, as MGRP does. Moreover, since Sidecar
probes are retransmitted TCP segments, potential probes
are limited by the TCP state machine—to avoid impact-
ing connection performance, Sidecar probes are transmitted
only when the connection has been idle for at least 500 ms,
which limits its utility in a streaming media scenario.

BitProbes is a service that leverages BitTorrent for large-
scale Internet measurements, culling hundreds of thousands
of target hosts from existing BitTorrent swarms, and mea-
suring network characteristics to those targets using Sidecar
and passive techniques [13]. While BitProbes uses BitTor-
rent traffic to find target hosts, MGRP reuses existing traffic
to actively measure paths to hosts of interest.

Jain and Dovrolis [16] propose a streaming media overlay
network called VDN (for video distribution network) that
shapes the transmission of streaming media packets to re-
semble a pathload train, which it can use to infer available
bandwidth. MGRP similarly allows application and mea-
surement traffic to be scheduled together, and our MGRP-
enabled MediaNet overlay (Section 3) performs a function
similar to VDN (though it also measures alternate links on
which no traffic is being sent). The key difference between
VDN and our work is that with MGRP, applications and
measurement tools can be kept separate. MGRP can piggy-
back any application traffic onto measurement probes with
the same destination, and likewise, an application can easily
take advantage of a range of tools. A newly developed tool
simply uses the MGRP API to immediately benefit from the
lower overhead that comes from piggybacking.

Passive measurement techniques, in which existing traffic
is examined to infer characteristics of the network, have seen
substantial research. MGRP is an optimization technique

289

for active measurement algorithms—by piggybacking actual
application data on measurement probes, the overhead of
active algorithms approaches that of passive algorithms.

7. CONCLUSIONS
We have presented MGRP, a kernel service for schedul-

ing active measurement probe trains that can piggyback ap-
plication data in what would otherwise be empty padding.
The result is saved network bandwidth and reduced over-
all packet losses. We find that, compared to sending active
probes interleaved with application data, piggybacking can
improve application throughput, is fair to cross traffic, and
reduces the time required to complete measurements. How-
ever, because MGRP causes probe packets and data packets
to share the same fate, packets should be piggybacked selec-
tively so as to reduce the chances that a lost packet is a data
packet. MGRP allows tools and applications to be written
separately and seamlessly combined. We think it can serve
as foundation for new, low-overhead measurement services.

8. REFERENCES
[1] S. A. Baset and H. G. Schulzrinne. An Analysis of the

Skype Peer-to-Peer Internet Telephony Protocol.
INFOCOM, 2006.

[2] Dario Bonfiglio et al. Tracking Down Skype Traffic. In
INFOCOM, 2008.

[3] L. De Cicco, S. Mascolo, and V. Palmisano. Skype
Video Responsiveness to Bandwidth Variations. In
NOSSDAV, May 2008.

[4] Frank Dabek et al. Vivaldi: A Decentralized Network
Coordinate System. In SIGCOMM, 2004.

[5] Constantinos Dovrolis, Parameswaran Ramanathan,
and David Moore. What do packet dispersion
techniques measure? In INFOCOM, 2001.

[6] Allen B. Downey. Using pathchar to estimate Internet
link characteristics. In SIGCOMM, 1999.

[7] Bill Fink and Rob Scott. Nuttcp web site.
http://www.lcp.nrl.navy.mil/nuttcp/.

[8] Jose Maria Gonzalez and Vern Paxson. pktd: A
Packet Capture and Injection Daemon. In PAM, 2003.

[9] Khaled Harfoush, Azer Bestavros, and John Byers.
PeriScope: An Active Probing API. In PAM, 2002.

[10] David Hassoun. Dynamic stream switching with Flash
Media Server 3, April 2008.
http://www.adobe.com/devnet/flashmediaserver/

articles/dynamic_stream_switching.html.

[11] Michael Hicks, Adithya Nagarajan, and Robbert van
Renesse. User-Specified Adaptive Scheduling in a
Streaming Media Network. In OPENARCH, 2003.

[12] Ningning Hu et al. Locating Internet Bottlenecks:
Algorithms, Measurements, and Implications. In
SIGCOMM, 2004.

[13] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy,
and Thomas E. Anderson. Leveraging bittorrent for
end host measurements. In PAM, 2007.

[14] Manish Jain and Constantinos Dovrolis. Pathload: A
Measurement Tool for End-to-End Available
Bandwidth. In PAM, 2002.

[15] Manish Jain and Constantinos Dovrolis. End-to-end
estimation of the available bandwidth variation range.
SIGMETRICS, 2005.

[16] Manish Jain and Constantinos Dovrolis. Path
Selection using Available Bandwidth Estimation in
Overlay-based Video Streaming. In IFIP Networking,
2007.

[17] Aylin Kantarci, Nukhet Ozbek, and Turhan Tunali.
Rate adaptive video streaming under lossy network
conditions. Signal Processing: Image Communication,
July 2004.

[18] Pavlos Papageorgiou. The Measurement Manager:
Modular and Efficient End-to-End Measurement
Services. PhD thesis, University of Maryland, 2008.

[19] Pavlos Papageorgiou and Michael Hicks. Merging
Network Measurement with Data Transport. In PAM,
2005.

[20] Attila Pásztor and Darryl Veitch. A Precision
Infrastructure for Active Probing. In PAM, 2001.

[21] David Pogue. For Purists, a Cut Above in Movies.
Article in the New York Times, October 2008.
http://www.nytimes.com/2008/10/02/technology/

personaltech/02pogue.html.

[22] Robert Reinhardt. Beginner’s guide to distributing
Flash video. AdobePress, Sep. 2007. http://www.
adobepress.com/articles/article.asp?p=1014968.

[23] Vinay Ribeiro et al. pathChirp: Efficient Available
Bandwidth Estimation for Network Paths. In PAM,
2003.

[24] Luigi Rizzo. Dummynet web site.
http://info.iet.unipi.it/~luigi/ip_dummynet/.

[25] Rob Sherwood and Neil Spring. Touring the Internet
in a TCP Sidecar. In IMC, 2006.

[26] Alok Shriram et al. Comparison of Public End-to-End
Bandwidth Estimation Tools on High-Speed Links. In
PAM, 2005.

[27] Joel Sommers and Paul Barford. An Active
Measurement System for Shared Environments. In
IMC, 2007.

[28] Joel Sommers, Paul Barford, Nick Duffield, and Amos
Ron. Improving accuracy in end-to-end packet loss
measurement. In SIGCOMM, 2005.

[29] Neil Spring, David Wetherall, and Thomas Anderson.
Scriptroute: A facility for distributed Internet
measurement. In USITS, 2003.

[30] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A
Measurement Study of Available Bandwidth
Estimation Tools. In IMC, 2003.

[31] Samplepoint-F 150 Mbps trans-pacific trace
(200803201500), March 2008.
http://mawi.wide.ad.jp/mawi/samplepoint-F/

20080318/200803201500.html.

[32] Aaron Turner. Tcpreplay tools.
http://tcpreplay.synfin.net/trac/.

[33] Norbert Vegh. NTools traffic generator/analyzer and
network emulator package.
http://norvegh.com/ntools/.

[34] Brian White et al. An Integrated Experimental
Environment for Distributed Systems and Networks.
In OSDI, 2002.

[35] Yin Zhang and Nick Duffield. On the constancy of
Internet path properties. In IMW, 2001.

290

http://www.lcp.nrl.navy.mil/nuttcp/
http://www.adobe.com/devnet/flashmediaserver/articles/dynamic_stream_switching.html
http://www.adobe.com/devnet/flashmediaserver/articles/dynamic_stream_switching.html
http://www.nytimes.com/2008/10/02/technology/personaltech/02pogue.html
http://www.nytimes.com/2008/10/02/technology/personaltech/02pogue.html
http://www.adobepress.com/articles/article.asp?p=1014968
http://www.adobepress.com/articles/article.asp?p=1014968
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/200803201500.html
http://mawi.wide.ad.jp/mawi/samplepoint-F/20080318/200803201500.html
http://tcpreplay.synfin.net/trac/
http://norvegh.com/ntools/

