
Persona: An Online Social Network
with User-Defined Privacy

Randy Baden, Adam Bender, Neil Spring, Bobby Bhattacharjee
University of Maryland

{randofu, bender, nspring, bobby}@cs.umd.edu

Daniel Starin
Starin Consulting∗

dstarin@starinconsulting.com

ABSTRACT
Online social networks (OSNs) are immensely popular, with
some claiming over 200 million users [10]. Users share pri-
vate content, such as personal information or photographs,
using OSN applications. Users must trust the OSN service
to protect personal information even as the OSN provider
benefits from examining and sharing that information.

We present Persona, an OSN where users dictate who
may access their information. Persona hides user data with
attribute-based encryption (ABE), allowing users to apply
fine-grained policies over who may view their data. Persona
provides an effective means of creating applications in which
users, not the OSN, define policy over access to private data.

We demonstrate new cryptographic mechanisms that en-
hance the general applicability of ABE. We show how Per-
sona provides the functionality of existing online social net-
works with additional privacy benefits. We describe an im-
plementation of Persona that replicates Facebook applica-
tions and show that Persona provides acceptable perfor-
mance when browsing privacy-enhanced web pages, even on
mobile devices.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer Com-
munications Networks—General ; C.2.4 [Computer Sys-
tems Organization]: Computer Communications Networks—
Distributed Systems; E.3 [Data]: Data Encryption; H.3.4
[Information Systems]: Information Storage and Retrieval—
Systems and Software

General Terms
Design, Security, Performance

Keywords
Persona, OSN, Social Networks, ABE, Privacy, Facebook

∗Mr. Starin’s work on this project was conducted as part of
a graduate course at the University of Maryland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

1. INTRODUCTION
Online social networks (OSNs) have become a de facto

portal for Internet access for millions of users. These net-
works help users share information with their friends. Along
the way, however, users entrust the social network provider
with such personal information as sexual preferences, politi-
cal and religious views, phone numbers, occupations, identi-
ties of friends, and photographs. Although sites offer privacy
controls that let users restrict how their data is viewed by
other users, sites provide insufficient controls to restrict data
sharing with corporate affiliates or application developers.

Not only are there few controls to limit information dis-
closure, acceptable use policies require both that users pro-
vide accurate information and that users grant the provider
the right to sell that information to others. Facebook is a
representative example of a social network provider. The
Facebook “Statement of Rights and Responsibilities” [9] re-
quires that users “not provide any false personal information
on Facebook” and“keep [their] contact information accurate
and up to date.” Further, it states that users “grant [Face-
book] a non-exclusive, transferable, sub-licensable, royalty-
free, worldwide license to use any IP [Intellectual Property]
content that [they] post on or in connection with Facebook.”

Cryptography is the natural tool for protecting privacy
in a distributed setting, but obvious cryptographic schemes
do not allow users to scalably define their privacy settings
in OSNs. Users want to be able to share content with
entire groups, such as their friends, their family, or their
classmates. Public key cryptography alone is unsatisfactory
when managing groups in an OSN: either users must store
many copies of encrypted data, users are unable to give data
based on membership in multiple groups, or users must know
the identities of everyone to whom they give access.

To meet the privacy needs of an OSN, we propose Per-
sona, an OSN that puts policy decisions in the hands of
the users. Persona uses decentralized, persistent storage so
that user data remains available in the system and so that
users may choose with whom they store their information.
We build Persona using cryptographic primitives that in-
clude attribute-based encryption (ABE), traditional public
key cryptography (PKC), and automated key management
mechanisms to translate between the two cryptosystems.

Persona achieves privacy by encrypting private content
and prevents misuse of a user’s applications through authen-
tication. Persona allows users to store private data persis-
tently with intermediaries, but does not require that users
trust those intermediaries to keep private data secret. Mod-
ern web browsers can support the cryptographic operations

135

needed to automatically encrypt and decrypt private data
in Persona with plugins that intercept web pages to replace
encrypted contents. Lastly, Persona divides the OSN enti-
ties into two categories: users, who generate the content in
the OSN, and applications, which provide services to users
and manipulate the OSN content.

The rest of this paper is organized as follows. We de-
scribe the cryptographic primitives and how they comprise
the correct cryptographic systems for Persona in Section 2.
We present novel compositions of ABE and PKC functions
that allow users to create flexible and dynamic access poli-
cies in Section 3. We describe the role of OSN applications
in Persona and show that Persona supports existing OSN
applications in Section 4. We present significant features
of our implementation in Section 5. We evaluate the per-
formance of Persona using data from a Facebook crawl and
ABE microbenchmarks on a mobile device in Section 6. We
describe related work in Section 7, discuss additional prob-
lems beyond the scope of this paper in Section 8, and con-
clude in Section 9.

2. CRYPTOGRAPHY IN A PRIVATE OSN
There are two tasks for encryption in building the private

online social network. The first is to restrict the information
available to applications as precisely as possible, so that in-
dividual organizations are not entrusted with large volumes
of personal information. Although it is tempting to focus
only on the exchange of information with friends, some ap-
plications may benefit from limited access to a user’s profile,
location, or messages, while carefully avoiding broad expo-
sure.

The second task is to restrict the information shared with
“friends” to what might be appropriate. We quote “friends”
here because the type of social link might be more than, less
than, or different from“friend.” Family, neighbor, co-worker,
boss, teammate, and other relations might define a connec-
tion in the social network. That connection is often simply
termed “friend”, regardless of the actual, off-line relation-
ship. A user’s decision to accept one of these pseudo-friends
into their neighborhood (and avoid discussing certain topics)
or exclude them (and avoid the benefits of social network-
ing) represents a dilemma that can be avoided, if users may
flexibly classify their “friends.”

Alone, these two problems may be easily solved. A so-
cial network could help users define access policies that in-
clude or exclude defined groups of friends accessing different
pieces of information. Such a feature would allow a user
to tweet “called in sick to work” without telling co-workers.
In practice, users segregate work colleagues from personal
friends by subscribing to different social networks. To pro-
vide such functionality efficiently without the assistance of
a trusted application provider requires some form of crypto-
graphic support for group keying. In this section, we define
two methods to share information with groups in an OSN.

What makes the OSN setting different from typical group
keying scenarios is that the sender (to the group) may not be
in charge of group membership. For example, Alice may post
a message on Bob’s wall, encrypted for Bob’s friends, with-
out (necessarily) knowing the list of Bob’s friends. Further,
Alice might wish to send a message to Bob’s friends who
live in the neighborhood: “Let’s meet up tonight”. Another
aspect of the OSN setting is that the number of potential
groups a user might encrypt to is very large (any possible

combination of friends of their friends). Cryptographic sup-
port alone is not sufficient for building a distributed online
social network; it is merely a necessary tool, difficult to ap-
ply, which shapes the eventual design.

2.1 Model
With the abstract goals of hiding personal information

from aggregators and hiding personal information from col-
leagues, we next refine these goals down to concrete require-
ments for cryptographic methods.

Each Persona user generates an asymmetric key-pair and
distributes the public key out-of-band to other users with
whom they want to share data. We refer to these other
users as friends, though the nature of each relationship is
defined by the user.

Persona allows users to create “groups” and choose which
users are part of a given group. Users control access to
personal data by encrypting to “groups.” Restricting data
to specific groups allows users to have fine-grained control
over access policy, which permits exchanging data with more
restrictions.

Cryptographic primitives in Persona must allow users to
flexibly specify and encrypt to groups. Users may spec-
ify groups using arbitrary criteria, but we expect users to
choose groups based on transparent relationships such as
“neighbor” or “co-worker” or on attributes such as “football
fan” or “knitting buddy.” Groups created by one user do
not affect the groups that can be created by another. How-
ever, to support OSN communication patterns, the groups
created by one user should be available for use, not just for
decryption, but also for encryption, by friends.

2.2 Traditional public-key approach
Traditional public-key and symmetric cryptography can

be combined to form an efficient group encryption primi-
tive [30, 37]. To create a new group from a list of known
friends, Alice encrypts a newly-generated group key with the
public key of each member of the new group. She then dis-
tributes this key to the members of that group and uses the
key to encrypt messages to the group. The group key may be
symmetric, in which case only group members can encrypt
to the group, or asymmetric, which allows non-members to
encrypt as well.

Distributing a new group key may coincide with sending a
new message: to create a message for all of her friends, Alice
might include both the keys and the data in the same object
for efficiency. To efficiently reuse a group and key for many
messages could require separating the keys from the data
and caching the group key for use on later messages. We in-
formally term the re-use of keys to avoid wasteful repetition
of public key operations “recycling.”

This protocol is computationally inexpensive, in that it
does not require signatures; the worst an attacker could do
is provide a faulty key that would soon be discovered. It is
also flexible for the group creator, in that the original cre-
ator can enumerate any set of friends to include in the group.
It is somewhat flexible for others, in that a friend who is a
member of two groups (“neighbor” and “football fan”) may
encrypt a message for the union of these groups (“neigh-
bor OR football fan”) by encrypting the message with both
group keys separately. However, a friend cannot further re-
strict access to an intersection (“neighbor AND football fan”)
without exposing the message to colluding friends that do

136

not match the expression (one a neighbor, the other a foot-
ball fan). One could encrypt with one group key and then
the other, but the colluding members of each set could de-
crypt the message intended for only the members with both
attributes.

Allowing users to encrypt data for groups that they are
not members of requires additional infrastructure. Alice can
give her friends the ability to encrypt messages for any of
her groups defined by an asymmetric keypair by publishing a
list of her groups and their public keys. Other users consult
this list to send messages to Alice’s groups. However, only
group members can encrypt to groups defined by a shared
symmetric key.

2.3 ABE
Alternately, attribute-based encryption (ABE) [5] can be

used to implement encryption to groups. To use ABE, each
user generates an ABE public key (APK) and an ABE mas-
ter secret key (AMSK). For each friend, the user can then
generate an ABE secret key (ASK) corresponding to the set
of attributes that defines the groups that friend should be
part of. For instance, if Alice decides that Bob is a “neigh-
bor”, “co-worker”, and “football fan”, then she would gener-
ate and distribute to Bob an ABE attribute secret key that
includes those three attributes. Bob becomes a member of
the groups defined by combinations of those attributes.

In ABE, each encryption must specify an access struc-
ture: a logical expression over attributes. For instance,
Alice can choose to encrypt a message with access struc-
ture (‘neighbor’ OR ‘football fan’), where ‘neighbor’ and
‘football fan’ are attributes, rather than groups, and any
of her friends who have an attribute secret key with either
attribute will be able to decrypt the message. Alice can also
encrypt to (‘neighbor’ AND ‘football fan’). In this case, the
ABE construction ensures that only friends with both at-
tributes will be able to decrypt the message. Unlike in the
traditional cryptography approach, a single encryption op-
eration constructs the new group and provides the (symmet-
ric) key that protects the rest of the message. Furthermore,
any user who knows Alice’s ABE public key can encrypt to
any access structure (and thus create any group) by knowing
the names and definitions of the attributes Alice defined.

ABE provides a natural mapping for the group encryp-
tion primitive that we envision for OSNs. This simplicity
comes at a performance penalty: ABE operations are about
100-1000 times slower than those of RSA. These ABE oper-
ations can be avoided in practice by careful system design.
Specifically, ABE defines new groups through attributes and
permits sharing efficient, symmetric keys that can be “recy-
cled” to avoid expensive operations. This approach means
that ABE’s performance penalty need only be paid when it
provides its ease-of-use or third-party group-definition ad-
vantages, not for each operation.

Consider our example access structure (‘neighbor’ AND
‘football fan’). In creating this group, Alice had to enumer-
ate all her friends and distribute a new group key to match-
ing friends. Now imagine that Bob wants to encrypt data to
the same (‘neighbor’ AND ‘football fan’) group. With ABE,
Bob would encrypt using (‘neighbor’ AND ‘football fan’) as
the access structure. Under traditional cryptography, if Al-
ice had pre-defined this group (and invited Bob), then Bob
could encrypt using the group symmetric key. Otherwise,
Bob can encrypt this message only if he can enumerate all

of Alice’s friends and know whether they belonged to both
groups.

Using ABE allows friend-of-friend interactions without re-
quiring enumerations of friend and attribute lists. A friend
may limit who may read a response to a wall post to a more
restricted group. For example, if Alice writes “I want to
watch Serenity this weekend,” as a post to her ‘friends’, Bob
might reply “I have the DVD, let’s watch it at my place,”
to Alice’s ‘friends’ who also have the ‘in-the-neighborhood’
attribute. Without ABE, Bob would have to rely on Alice to
have created this (intersection) group in advance. As long
as users share attribute names (and their meanings) with
friends, ABE provides an elegant mechanism for users to
target information for friends-of-friends. The same function-
ality can be implemented without ABE, but requires more
information exchange (lists of all friends-of-friends and their
attributes) and a key distribution mechanism (that maps
groups defined by friends to the group key).

3. GROUP KEY MANAGEMENT
We describe how Persona users define groups and how

users generate and use keys corresponding to groups. Keys
guard access to two types of objects in Persona: user data
and abstract resources. In Persona, all users store their data
encrypted for groups that they define. Any user that can
name a piece of data may retrieve it, but they can only read
it if they belong to the group for which the data was en-
crypted. Abstract resources represent non-data objects, for
example, a user’s storage space or a Facebook Wall. The
set of possible operations on an abstract resource is tailored
to the resource (for example, it is possible to write onto a
storage space or post to a user’s Wall). Each resource has
a home which maintains and enforces the resource’s Access
Control List (ACL). The resource’s owner may change the
resource ACL and allow specific groups different levels of ac-
cess to the resource. The Persona group management oper-
ations described in this section allow users to control access
to data and resources. All Persona applications (Section 4)
are built using these operations.

Each Persona user is identified using a single public key
and stores their own (encrypted) data with a storage service.
Users with existing relationships exchange their public keys
and storage service locations out of band. Storage services
support two operations for data storage and retrieval: put
and get, which mimic the store and retrieve operations of
a hash table. Storage is a resource in Persona, and users
may grant other users (or groups) the ability to store (put)
onto their storage service using the operations described in
this section. Storage services are a specialized case of the
broader class of Persona applications and are described in
more detail in Section 4.1.

We use the notation shown in Table 1. In the algorithm
listings, u : 〈protocol step〉 means user u invokes the speci-
fied step.

3.1 Operations
Persona operations allow users to manage group member-

ship and mandate access to resources. The operations com-
bine ABE and traditional cryptography, allowing individu-
als to be securely added to groups defined using ABE and
allowing group members authenticated access to abstract
resources.

137

Term Definition
u.SS u’s storage service location
u.K Key K created by u
(TPK ,TSK) PKC public/secret keypair
(APK ,AMSK) ABE public/master secret keypair
ASK ABE user secret key
AS Access structure
TKeyGen() Generate RSA keypair
TEncrypt(K, m) RSA encrypt m with key K
TDecrypt(K, c) RSA decrypt ciphertext c
TSign(K, m) RSA sign m with key K
ABESetup Generate an attribute public key

and master secret key
ABEKeyGen(K, attrs) Generate an attribute secret key

with attributes attrs
ABEEncrypt(K, m, AS) ABE encrypt m with key K and

access structure AS
ABEDecrypt(SK, PK, c) ABE decrypt ciphertext c with

secret key SK

Table 1: Notation used in this paper.

3.1.1 DefineRelationship
Users invoke the DefineRelationship function to add indi-

viduals to a group. The user generates an appropriate at-
tribute secret key using the ABEKeyGen function, encrypts
this key using the target user’s public key, and stores the
encrypted key on her storage service. The target user can
retrieve this encrypted key using a process described in Sec-
tion 3.3, decrypt it, and use it as necessary.

Algorithm 1 DefineRelationship(u1, attrs, u2)

u1: A ← ABEKeyGen(u1.AMSK , attrs)
u1: C ← TEncrypt(u2.TPK , A)
u1: u1.SS.put(H ′(u2.TPK), C)
. . .
u2: C ← u1.SS.get(H ′(u2.TPK))

Example Usage: Alice wants to confer the attribute
‘friend’ upon Bob. Alice creates K = Alice.ASK‘friend’, an
ABE key associated with the ‘friend’ attribute. Alice com-
putes C = TEncrypt(Bob.TPK , K) after obtaining Bob’s
public key from out-of-band communication with Bob. Alice
stores C on her storage service at the location H ′(Bob.TPK),
where H ′(·) is a hash function defined in Section 3.3. Bob
retrieves C from Alice’s storage service and decrypts it, gain-
ing the ability to decrypt content guarded by the attribute
‘friend’. Although any user can retrieve C from its well-
known location, only Bob can decrypt it.

3.1.2 DefineTransitiveRelationship
The DefineTransitiveRelationship function allows a user Al-

ice to define groups based on a group defined by another
user, Bob.

Alice creates a new attribute to describe the new group
‘bob-friend’ and generates an ASK‘bob-friend’ with that at-
tribute. Alice encrypts ASK‘bob-friend’ with the access struc-
ture (‘friend’) using Bob’s attribute public key and stores
the ciphertext on her storage service (Algorithm 2).

Users with the attribute ‘friend’ in Bob’s ABE domain
may retrieve and decrypt this key and use it to view content
encrypted within Alice’s ABE domain. Alice may include a
traditional keypair, used for authentication to ACLs, in the
ciphertext C. We describe how Bob’s friends retrieve these
keys in Section 3.3.

Algorithm 2 DefineTransitiveRelationship(u1,APK ,
access structure AS, attrs)

u1: A ← ABEKeyGen(u1.APK , attrs)
u1: C ← ABEEncrypt(APK , A, AS)
u1: u1.SS.put(H ′(AS,APK), C)

Example Usage: Alice is advertising a party on an OSN
and wants to invite Bob and any of Bob’s friends. Alice dis-
covers that Bob uses the attribute ‘friend’ to define who
his friends are. Alice generates the group identity tradi-
tional PKC keypair (TPK ,TSK) for authentication, creates
the new attribute ‘bob-friend’, and generates the attribute
secret key A = Alice.ASK‘bob-friend’. Alice calculates

C = ABEEncrypt(Bob.APK , [A, (TPK ,TSK)] , ‘friend’)

and stores it on her storage service at H ′(‘friend’, Bob.APK).
Alice also performs AssignRightsToGroup to generate group
identity keys and instruct the application providing the event
advertising service that TPK can be used to authenticate
RSVPs. Bob sends to each of his friends a link to the ap-
plication that directs them to Alice’s event. Bob’s friends
cannot initially view the data, so they get C, decrypt it, and
view the event. They then get the group identity key, which
allows them to authenticate and RSVP to the event.

3.1.3 AssignRightsToIdentity
Resource owners use AssignRightsToIdentity to provide other

users specific rights to named resources. An example of such
a right would be the ability to store data on another user’s
storage service; we describe other resources and uses in Sec-
tion 4.

To assign rights, the user instructs the resource’s home
to add a (public key, set of rights) pair to the resource’s
ACL. If the public key was already in the ACL, then the
rights are changed to those specified in the new rights set
(Algorithm 3).

Algorithm 3 AssignRightsToIdentity(u1, rights,
TPK , resource r, owner o)

u1: o.chACL(r,TPK , rights)

User u2 who possesses TSK may exercise the named rights
on the resource by authenticating to the resource’s home
node using TSK .

Example Usage: Alice wants to give Bob the ability to
put data on her storage service. Alice instructs her stor-
age service to create a new ACL rule based on Bob.TPK
that allows write access. Bob later calls the put function
on the location L with the world readable data m. Al-
ice’s storage service issues a nonce n, and Bob replies with
TSign(Bob.TSK , [n,“write(L, m)”]). Alice’s storage service
verifies the signature against Bob.TPK , authenticating Bob’s
write according to Alice’s access policy.

3.1.4 AssignRightsToGroup
The AssignRightsToGroup function allows a user Alice to

provide resource access to a group G rather than to an in-
dividual. The group is specified using attributes defined in
Alice’s ABE domain.

First, Alice creates a new (TPK ,TSK) pair specifically for
G. Alice ABE-encrypts this keypair with an access struc-

138

ture that identifies members of G. Alice stores the resulting
ciphertext on her storage service. This pair of PKC keys be-
comes the group identity and Alice can assign rights accord-
ing to AssignRightsToIdentity. The pseudocode is presented
in Algorithm 4.

Algorithm 4 AssignRightsToGroup(u1, rights,
access structure AS, resource r, owner o)

u1: (TPK ,TSK)← TKeyGen()
u1: C ← ABEEncrypt(u1.APK , (TPK ,TSK), AS)
u1: u1.SS.put(H ′(AS,APK), C)
u1: AssignRightsToIdentity(u1, rights,TPK , r, o)

Example Usage: Alice wants to give her friends and
her family the ability to put data on her storage service.
Alice defines the group G as the users who have ‘friend’ or
‘family’ in their ASK in Alice’s ABE domain. Alice creates
K = (TPKG,TSKG), and stores

C = ABEEncrypt(Alice.APK , K, (‘friend’ or ‘family’))

on her storage service. Anyone who possesses either of these
attribute keys can retrieve C, decrypt it with their ASK ,
and use TSKG to authenticate to store data on the storage
service as described in AssignRightsToIdentity.

3.2 Revocation of Group Membership
Removing a group member requires re-keying: all remain-

ing group members must be given a new key. Data encrypted
with the old key remains visible to the revoked member. The
nominal overhead is linear in the number of group members
but can be reduced [37].

An ABE message can be encrypted with an access struc-
ture that specifies an inequality (“keyYear < 2009”), and the
message can be decrypted only if a user possesses a key that
satisfies the access structure. This facility can be used to
provide keys to new group members such that they cannot
decrypt old messages sent to the group.

3.3 Publishing and Retrieving Data
Private user data in Persona is always encrypted with a

symmetric key.1 The symmetric key is encrypted with an
ABE key corresponding to the group that is allowed to read
this data. The group is specified by an access structure as
described in Section 2.3. This two phase encryption allows
data to be encrypted to groups; reuse of the symmetric key
allows Persona to minimize expensive ABE operations.

Users put (encrypted) data onto their storage service and
use applications to publish references to their data. Data
references have the following format:

〈tag, storage service, key-tag, key-store〉

The tag and storage service specify how to retrieve the en-
crypted data item, and the key-tag and key-store specify
how to obtain a decryption key.

Users read data by retrieving both the item and the key.
Suppose item i is encrypted with symmetric key s. If user u1

wants to read i and u1’s local cache or own storage service
does not contain s, u1 can retrieve the ABE-encrypted s us-
ing the key-tag and key-store information in the reference.

1Users may store public data in plain-text to reduce over-
head.

s is encrypted under the access structure AS in the ABE do-
main defined by APK (u1 can infer both from the encrypted
key). u1 tries to decrypt s using its ABE secret key, and if
successful, decrypts i using s. u1 stores s, encrypted with
their own public key, on their own storage service for future
use. The encrypted key is stored at H(AS,APK), where H(·)
is a hash function. If s is instead encrypted with traditional
public key TPK , u1 stores the encrypted s at H(TPK).

Suppose user u2 wants to encrypt a message for a set of
users specified by access structure AS in the ABE domain
with public key APK . The domain may belong to u2 or to
some other user; u2 only needs to know the public parame-
ters for this domain in order to encrypt.

u2 looks for a symmetric key for this group by invoking
u2.SS.get(H(AS,APK)). Such a key would exist if u2 had
previously encrypted or decrypted messages for this group.
If the retrieval succeeds and the encrypted symmetric key is
found, u2 decrypts it using his own public key and obtains
the symmetric key s.

If the retrieve fails, u2 constructs a new symmetric key
s, encrypts it with his own PKC public key and stores it
in u2.SS under the tag H(AS,APK). u2 further encrypts
s using ABEEncrypt with access structure AS and APK and
stores this ABE-encrypted symmetric key on u2.SS with the
tag H ′(AS,APK). H ′ is a hash function different from H.
By construction, the ABE-encrypted key can be decrypted
exactly by those users who belong to the group to which the
message is encrypted. This group may not include u2. If u2

wishes to encrypt s with traditional PKC instead of ABE,
u2 encrypts with public key TPK and stores the encrypted
key at H ′(TPK).

Finally, u2 encrypts the message using s and stores it using
tag M . u2 can then publish a reference to this item of the
form:

〈M, u2.SS, H ′(AS,APK), u2.SS〉

Other users resolve the reference by invoking u2.SS.get(M)
which will retrieve the original message encrypted with s.

In this example, u2 obtained the decryption key from his
own storage service (or created a new key and put it on his
own storage service). In general, however, u2 may already
know a different key for this group (for example, one that
was used by a different user to encrypt to the same group)
that is stored on some other storage service. Instead of cre-
ating his own key, u2 may choose to refer to this pre-existing
key instead.

4. APPLICATIONS
Persona users interact using applications. Even core func-

tions of current OSNs, including the Facebook Wall or Pro-
file, exist in Persona as applications. In this section, we
describe how applications use the group key and resource
management operations of Section 3.

Persona applications export a set of functions (an API)
and a set of resources over which those functions operate.
When there are resources, such as file stores or documents,
two functions are expected in the API. First, register allo-
cates a resource for a principal (to create a Wall, for exam-
ple). Registration with an application returns a reference to
the newly-allocated resource to the client. Second, chACL
allows the owning principal to define access restrictions via
ACLs: for a given resource and a given principal, permit an

139

operation. Applications will support further operations, as
we describe below, starting with the basic storage service.

4.1 Storage Service
Storage is a basic Persona application that enables users

to store personal data, make it available to others who re-
quest it, and sublet access to storage for applications to use
for per-user metadata. A user trusts a storage service to
reliably store data, provide it upon request, and protect it
from overwrite or deletion by unauthorized users. A user
does not trust a storage service to keep data confidential,
relying instead on encryption to guard private information.

The storage service exports both get and put functions.
The storage application returns data whenever the get is
invoked with a valid tag. The invoking principal is not au-
thenticated or validated, since the expectation is that data
is protected via encryption.

The put function requires the invoking principal n to au-
thenticate to the storage application. When n wants to put
data, she presents her public key K and the store identifier s
to the storage application. The storage application ensures
that (K, put) exists in the resource ACL corresponding to s,
and authenticates n using a challenge-response protocol. n
may write into s if the authentication succeeds.

Applications must store the metadata they have constructed.
They can provide their own storage or use a storage ser-
vice. If the application provides its own storage resource,
the application returns a handle to the resource when a
user registers with the application. The user can then call
AssignRightsToIdentity to give other users access to the ap-
plication’s storage resource.

The user can instead provide the storage resource to the
application and invoke:

AssignRightsToIdentity(user, write, App.TPK , c, user.SS)

where c is a storage resource on user.SS, to allow the appli-
cation to write onto the user’s storage server. The user now
registers with the application, passing it the storage resource
c in which to store the metadata:

R← App.register(user.TPK , c)

In turn, the application returns a reference (R) to the re-
source corresponding to the application instance.

To prevent an attack in which another user u2 pretends
to own c, the registering user must prove that he owns c.
He does this by writing a nonce provided by the application
into c. The application ensures the nonce is present before
writing.

4.2 Collaborative Data
The predominant method of sharing data in OSNs is via

collaborative multi-reader/writer applications. For instance,
the quintessential Facebook application, the Wall, is a per-
user forum that features posts and comments from the user
and his friends, the Facebook Photos application stores com-
ments and tags for each picture and displays them to friends,
the MySpace comments section allows friends to write to a
user’s page and read others’ comments, and each photograph
posted to Flickr has a page where members of the Flickr
community can comment on photographs. Instead of re-
implementing each OSN application in Persona, we present
a generic multi-reader multi-writer application named Doc.

Doc can be used as a template for implementing a variety
of OSN applications, as we describe in Sections 4.2.1–4.2.4.

Doc is organized around a document shared between col-
laborating users. Users register with the Doc application
and create a new Page. The application associates a re-
source with this Page, and allows the user to provide read or
write access to other users (or groups). The Page metadata
contains references to encrypted data; the application is re-
sponsible for formatting this data for display. Users who are
allowed to write to the Page contact the application with
data references, and Doc updates the Page appropriately.
The Page can be stored by the application or on a storage
server specified by the original user (in which case the user
has to provide the Doc with write access to the Page stored
on the storage server). We describe these steps next.

Reading the Page. To allow Bob to read content in her
Page, Alice must give Bob appropriate keys and a reference
to her Doc. In particular, Alice must provide an attribute
secret key ASK that will allow him to decrypt (some subset
of) the data in the Page. Alice decides which attributes Bob
should get and calls

DefineRelationship(Alice, attrs, Bob)

to issue an ASK to Bob. Obviously, Alice may already have
given Bob these attributes, in which case this step can be
skipped. In either case, she provides him with a reference
to her Page.

Bob can now retrieve the Page metadata, resolve data
references, and decrypt (potentially only a subset of) the
Page data.

Writing to the Page. Alice may want to provide Bob
with the ability to write to her Page, where writing is a func-
tion exported by the Doc application. She does so by adding
Bob’s public key to the Page’s resource ACL by invoking:

AssignRightsToIdentity(Alice, write, Bob.TPK , D, Doc)

Bob may now write onto the Page. Bob stores (appropri-
ately encrypted) data onto a storage-server and notifies the
Doc of a write onto Alice’s Page. The Doc application must
authenticate Bob and ensure that his public key is in Alice’s
Page’s ACL with the proper right. If the authentication suc-
ceeds and Alice has provided Bob the write right, then the
Doc application updates the Page metadata (either stored
at the application or on a storage server specified by Alice)
with the data reference provided by Bob. The interpretation
of the Page metadata is application-specific.

Alice may authorize multiple users to write to the same
Page. Conflicting updates or concurrent writes are handled
by the Doc application, possibly by storing the Page as an
append-only log. Users need not encrypt using a single ac-
cess structure, and may choose any access structure they
desire. They may even write onto a Page using an access
structure that cannot be decrypted by some of the Page’s
readers.

In summary, Doc is a general multi-reader/writer tem-
plate for storing and formatting metadata with references to
encrypted content. Doc can easily be tailored to implement
many useful OSN applications, as we demonstrate next.

4.2.1 Wall using Doc
The Facebook Wall is a multi-user collaborative applica-

tion that allows a user’s friends to read messages, post mes-
sages, and comment on posts onto a shared document, called

140

the user’s Wall. Doc can be used to (almost trivially) imple-
ment the Wall application. Unlike the Facebook Wall, the
Persona Wall is distributed: it allows users to choose where
the Wall metadata is stored. All posts and comments are
stored on storage servers owned by the poster/commenter.
The Wall document itself contains rendering information
and references to writes onto the wall. These references must
be resolved (i.e., the data fetched from appropriate storage
servers) and decrypted before rendering the Wall. End-user
applications may intelligently cache data and keys to reduce
rendering latency.

4.2.2 Chat and Status Updates over Doc
A chat application can use Doc as the template. A chat

session is a shared document to which the chat host invites
other users (and provides them write access to the chat Doc).
The chat application has to implement auxiliary UI func-
tions (such as an invite notification, and polling for new
messages), but the basic structure follows that of a simple
Doc onto which users may append messages.

Doc can also be used to implement user-specific status
updates. The user creates a status Doc and provides read-
only access to other users (or groups) who can periodically
read the Doc to receive updates. The reference to the status
update Doc may be obfuscated such that unauthorized users
are not able to detect changes in status (even if they are not
able to decrypt the status message).

4.2.3 News Feed using Doc
The news feed in Facebook collects “stories” from other

applications to provide a temporal view of Facebook activ-
ity. In Persona, the user provides the news feed with a list
of applications that he wants to appear in his feed, and an
APK and AS (or perhaps several access structures along with
a policy dictating when to use each access structure) with
which to encrypt the feed. Only the user may change the
list of monitored applications. The news feed application
retrieves the metadata from the selected applications and
parses it to create a history of changes to the user’s appli-
cations’ metadata. The application writes this history as
a user would write a Page; only the news feed may write
to this metadata. Viewing the feed consists of viewing the
Page. The contents of the Page are visible to anyone that
can satisfy AS.

4.2.4 Other Applications
Other popular Facebook applications such as Profiles, Pho-

tos, Groups, and Events can be implemented using Doc as
well. These applications can be implemented by altering
the interpretation and presentation of metadata and tailor-
ing the API to the relevant task. Though Doc is sufficient
for many Facebook applications, we consider examples of
existing applications that require additional features in the
following sections.

4.3 Selective Revelation
The user may want to share some personal data with an

application. One such example is an application that allows
users to search for others. Alice can choose exactly the in-
formation by which other users can find her by only sharing
that data with a Search application. Another example is the
Where I’ve Been Facebook application [36]. Users enter a
list of countries or cities that they have lived in, visited, or

want to visit, and the application shows a map with these
locations highlighted. Users can also compare maps with
another user to see which locations they have in common.

In order to permit applications that post-process personal
data, we allow them to decrypt certain data by giving them
an ASK . Alice encrypts a list of cities she has visited with
the access structure (‘classmates’ or ‘where-ive-been’). She
generates an ASK and encrypts it with the Where I’ve Been
application’s TPK :

DefineRelationship(Alice, ‘where-ive-been’, Where I’ve Been)

When she registers to use the application, she gives it a
reference to the encrypted key. The application retrieves
the key and can now decrypt and parse Alice’s list of cities
to produce the highlighted map. This general approach of
selectively revealing user data to applications has been dis-
cussed earlier in [20].

Application functionality that can be implemented with-
out revealing personal information is surprisingly broad; how-
ever, in some cases, the application must compute trans-
forms over the user’s data. This is the case for the Where
I’ve Been application, especially when it has to compare
the locations of multiple users. We return to the general
problem of structuring private applications and the tussle
between application functionality and user privacy in Sec-
tion 8.

4.4 Applications that use the social graph
The graph of social connections between Persona users is

not public. It is realized only in the collections of public keys
of friends a user stores, and given meaning only through the
assignment of attributes using DefineRelationship. This ob-
scurity of friend links frustrates applications such as those
that analyze the graph of connections to help connect with
more friends (People You May Know) or to visualize inter-
connections between friends (the Friend Wheel).

To enable these applications, users have two options. A
user may publish social links to each application using selec-
tive revelation or by directly uploading a set of relationships.
Alternatively, a single, somewhat trusted social link appli-
cation might provide access to other applications.

Published edges in the social graph are protected just as
other data in Persona: encrypted to be hidden from arbi-
trary users and applications, but exported to chosen users
and useful applications that may access only what they re-
quire.

4.5 Inherently private applications
Persona allows for potential applications which are not re-

alistic on OSNs without privacy. For instance, a user might
want to have a Medical Record application where she stores
her medical data. She might not want her employer or her
friends to see her data, but she would want to share it with
her doctor. She may even have many doctors, and it may be
helpful for them to collaborate in a central location. There
is no technical difference between this application and Doc.
However, these applications are uniquely available on Per-
sona because they operate on sensitive private data.

5. IMPLEMENTATION
Our Persona implementation consists of two Persona ap-

plications (a storage service and a customizable Doc appli-

141

cation) and a browser extension for viewing encrypted pages
and managing keys.

5.1 Storage Service Application
Our Persona storage service application is an XML RPC

server using PHP and Apache with a MySQL database back-
end. The service implements the storage API described in
Section 4.1.

5.2 Doc Application
We have implemented a Doc application (Section 4.2) in

PHP with a MySQL backend for storing metadata. Using
the Doc as the base, we implemented Profile and Wall ap-
plications.

Our Profile application presents an interface for the user to
put data onto her profile and read others’ profiles. The pro-
file metadata (stored by the Profile application in a MySQL
database) consists of references to encrypted profile data
items. The Profile application allows only the registered
user to write onto the Doc Page.

Our Wall application is identical in structure to the Pro-
file, but allows other users to write onto the Doc as well. The
Wall application allows users to post new items and reply
to existing items. The Wall application constructs the Wall
Doc metadata file threading posts and replies. As with all
applications, the posts and references themselves are stored
on other storage services, and the Wall application operates
using item references only.

5.3 Browser Extension
Users interact with Persona using a Firefox extension.

The extension uses the XPCOM framework in the Mozilla
Build Environment to access the OpenSSL and cpabe [2] li-
braries for cryptographic operations. The extension allows
users to register with applications, encrypt data to groups,
resolve data references, decrypt data using appropriate keys,
and facilitate out-of-band public-key exchange.

The browser extension is a trusted component in Persona;
it is, in fact, the only one. The extension implements a se-
cure keystore, to which users upload their private and public
keys. The extension is given a list of public keys corre-
sponding to the user’s contacts. These keys are also stored
(encrypted with the user’s public key) on a storage service.
When a user uses a new browser, the extension is initialized
with the user’s private key and a reference to the user’s per-
manent keystore. The extension then downloads all of the
other keys from the storage service.

When an encrypted Persona page is loaded, the extension
processes the elements on the page and replaces them in-
line if necessary. There are two main types of replacement:
resolution of data references and replacement of special tags.

Data reference resolution. The extension parses item
references, fetches the items from storage services, decrypts
the items, and verifies any signatures on those items. In our
implementation, all data is signed by the creator and verified
if the signer’s key is known. Data resolution is recursive:
encrypted data may contain references to more encrypted
data.

Our extension uses an XML-RPC javascript library capa-
ble of sending asynchronous RPCs. During page processing,
all data items are fetched asynchronously using XMLHttpRe-

quest. If the items are encrypted with an unknown key, the
keys are also fetched asynchronously. Once all keys and data

items have been fetched, the extension sequentially decrypts
(and verifies) each item, and replaces the references with the
decrypted text. We are currently extending our implemen-
tation to decrypt items as they arrive rather than waiting
for all fetches to complete.

Replacement of special tags. Persona users may not
want to share their list of contacts (to be precise, their public
keys) with applications. Instead, this list is kept encrypted
with the user’s public key on a storage service, which the ex-
tension downloads upon initialization. The extension recog-
nizes a“friend-form”tag sent by an application, and replaces
this with a drop-down box containing a list of the user’s con-
tacts. This facility is used in our Profile application to allow
a user to view their contacts’ profiles.

The extension allows users to encrypt data to groups. It
replaces embedded forms with a text box into which the user
can enter private data. When the submit button is pressed,
the extension prompts the user for a policy under which to
encrypt the data, performs the encryption (constructing and
publishing symmetric keys as necessary), puts the encrypted
data on the user’s storage service, and replaces the form data
with a reference to the encrypted data item.

Caching. To reduce latency, the extension caches vari-
ous keys and contact information. This includes keys the
user has created: an RSA public key (137 bytes for 1024-
bit moduli), RSA private key (680 bytes), APK (888 bytes),
and AMSK (156 bytes). For each friend, the extension caches
their storage service information, RSA public key, and APK .
The extension also stores the ASK (the size varies: 407 bytes
for one attribute and 266 bytes for each additional attribute)
created for that friend along with the attributes associated
with the ASK . For each policy that the user is a part of,
whether it is created by the user or a friend, the extension
caches the RSA keypair and the symmetric key.

This caching and recycling of symmetric keys allows the
extension to pay the cost of an ABE decryption only when
it encounters an item encrypted using a new key reference.
This will occur when the encryption uses a new policy (cor-
responding to a new group) or an existing policy to which
a user has encrypted with a new symmetric key. The latter
might occur if the encrypting user is not part of the group
and is unable to decipher existing symmetric keys for that
policy. The common operation of the extension does not
require expensive ABE operations.

5.4 Integrating Persona with Facebook
Current deployments of OSNs underline their undeniable

popularity. It is not realistic to assume that Persona (or
some other privacy-enabled network) will replace existing
OSNs. Instead, we expect users to migrate personal infor-
mation onto private networks, while continuing to use exist-
ing OSNs for public data.

We have designed Persona to inter-operate with existing
OSNs, and our prototype integrates with Facebook. Persona
applications are accessible as Facebook applications and can
interact with Facebook’s API, providing privacy-enabled ap-
plications through the familiar Facebook interface. Con-
versely, existing Facebook applications can be made Persona-
aware on a per-application basis. Users protect their private
data by storing it on Persona storage services rather than
on Facebook; only fellow Persona users will be able to access
the data, and only if they are given the necessary keys and
access rights.

142

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Data Size (bytes)

Data Sizes

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
D

F

Data Size (bytes)

Average
95th Percentile

Maximum

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Number of Data Items

Number of Data Items

(c)

Figure 1: (a) CDF of the size of Facebook profile data items. (b) CDF of the maximum, 95th percentile, and
average of the size of data items per Facebook profile. (c) CDF of the number of data items on Facebook
profiles.

Using Persona applications within Facebook. Users
log-in to Persona by authenticating to the browser extension
(which then decrypts and encrypts data transparently), and
then log-in to Facebook as normal. A Facebook-aware Per-
sona application is akin to any third-party Facebook appli-
cation, and can be selected for use as any other Facebook
application. Unlike other applications, Persona applications
use markup that is interpreted by the Persona browser ex-
tension, and are aware of data references.

Traditional Facebook applications may use the Facebook
API to communicate to users by sending notifications, dis-
playing items on the Facebook wall, and sending application
invitations. The same facilities are available to Persona ap-
plications. We have implemented an abstract OSN interface
that Persona applications use to access OSN APIs. While
our design is general, our current implementation has only
been tested with Facebook. Our Doc-based applications are
accessible via Facebook as Facebook applications.

Using Facebook applications on Persona. Once users
begin to use Persona, existing Facebook applications may
want to provide Persona users with the ability to store pri-
vate data. Minimally, each application has to be ported to
operate using Persona data references, though some appli-
cations that transform user data may require a complete
rewrite. We discuss application porting in Section 8.

6. EVALUATION
In this section, we quantify the processing and storage

requirements of Persona and measure the time to render
Persona-encrypted web pages.

The key parameters of our evaluation are the sizes and
number of distinct data elements that might be stored on
a single Persona page. Each distinct element represents a
request to a storage server and may, if the policy and associ-
ated key are unknown, also imply a request for a group key
and its decryption with ABE. This process represents the
performance cost of Persona. We estimate these parameters
using Facebook as a model, combining real user profiles from
Facebook with observations of application-provided limits
on the number of items per page.

User profiles can contain hundreds of data items. We use
profile data in our evaluation because it exposes the worst
case performance of Persona, where users must fetch and
decrypt many individually encrypted data items. Our data

is from a crawl of Facebook profiles gathered in January,
2009. The crawl contains the HTML of the profile pages of
90,269 users in the New Orleans network; of those pages,
65,324 pages contain visible profiles, and 39 pages had mis-
cellaneous errors that left them unusable.

We parse these Facebook profiles into data items that
could be individually encrypted. First, we parse the docu-
ment based on fields such as Name, Birthday, Activities, In-
terests, etc. We then decompose fields which contain multi-
ple items separated by commas, bullet points, or line breaks.
Under this decomposition, users would be able to, for exam-
ple, individually encrypt every TV show, book, and movie
that they enjoy, if they chose to do so.

Figure 1 (a) shows a CDF of the sizes of all data items and
Figure 1 (b) shows a CDF of the maximum, 95th percentile,
and average data item sizes on a per-profile basis. These
plots show that most of the data items are small, but many
pages also have a few large items. We also present a CDF of
the number of data items per profile in Figure 1 (c). These
figures provide a backdrop for the performance of Persona:
our results show that the number of data items on a page
determines the page load time.

6.1 Desktop Performance
We evaluate our Persona implementation on a desktop

computer using a 2.00 GHz processor and 2 GB of RAM.
The desktop, storage service, and application server are con-
nected through a router which introduces an artificial delay,
chosen uniformly between 65ms and 85ms, on each packet.
These values reflect high latencies observed by King [15] and
represent a case where the storage service is far away from
the user.

We use two experiment scenarios. The first, termed cool ,
represents Persona in its initial state, when group symmet-
ric keys must be retrieved from a storage service and de-
crypted. The second, termed warm, represents Persona us-
age in the steady state, when all symmetric keys associ-
ated with groups have been cached. We repeat the cool ex-
periment scenario three times, varying the number of user-
defined groups between 1, 10, and 100. We run only one
warm experiment scenario since no key fetches and no ABE
decryptions are needed. In each data set, we randomly as-
sign each data item to one of the user-defined groups.

143

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

T
ot

al
 P

ro
fil

e
Lo

ad
 T

im
e

(s
ec

on
ds

)

Number of Data Items

Cool - 100 Policies
Cool - 10 Policies

Cool - 1 Policy
Warm

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Total Profile Load Time (seconds)

Warm
Cool - 1 Policy

Cool - 10 Policies
Cool - 100 Policies

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10 20 30 40 50 60 70 80 90 100T
im

e
to

 D
ec

ry
pt

 a
nd

 V
er

ify
 (

se
co

nd
s)

Number of Data Items

Cool

(c)

Figure 2: (a) Total time needed, in seconds, to present Facebook profiles composed of encrypted data items.
(b) CDF of total time to load Facebook profiles. (c) Total time needed, in seconds, to decrypt encrypted
data items in Facebook profiles in the cool data set with 100 groups. Note the difference in scale from (a).

For each Facebook profile, we first encrypt and store each
of the data items in Persona. We then retrieve a page that
contains references to all of these data items. In the cool
data set, we asynchronously fetch the keys needed to decrypt
all of the items in the page. In both cool and warm, we also
asynchronously fetch the encrypted data items themselves.
Once all keys and data items have been fetched, we decrypt
the data items on the page, verify their signatures, and re-
render the page. For efficiency, rather than evaluating every
profile, we evaluate a profile page drawn randomly from the
set of all pages that have x items, for all values x for which
there is a profile with x items.

Page load time. Page load times increase linearly with
the number of elements. Figure 2 (a) shows how long it
takes to download, decrypt, and display the profile page for
each of our experiments, as a function of the number of
data items on the page. We extrapolate the distribution of
page load times per Facebook profile in Figure 2 (b). The
median page load time is 2.3 seconds and the maximum is
13.7 seconds. Most pages consist of a few, small entries, so
most are loaded quickly. The cool data sets are comparable
to the warm data set, indicating that retrieving keys is not
too expensive. These times may also represent a worst case;
if users aggregate their data more coarsely there will be fewer
data items, requiring fewer fetches and thus fewer round-trip
times. Another possible improvement would be to cache
commonly retrieved data items, but we have not performed
this optimization.

Encrypted data size. We show how much larger the
encrypted data is for individual data items in Figure 3 and
for entire profile pages in Figure 4. There is a substantial
increase in the size of the stored data, and this will affect
both the storage capacity of the storage services and the
network resources required to transfer data. The storage
services are inherently distributed, so they should be able to
scale to support the needs of the system.

6.2 Mobile Device ABE Performance
Mobile devices are increasingly used for limited access

to OSNs. MySpace, Facebook, and LinkedIn [24] all have
iPhone applications, and there are many twitter and in-
stant messaging clients. Persona, to provide a substitute,
must also be realizable on mobile devices. Enabling mobile
devices with Persona-based security would enable users to

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

D
at

a
S

iz
e

(K
B

s)

Number of Data Items

Stored
Plaintext

Figure 3: Total size of plaintext and stored (cipher-
text and signature) data for Facebook profile pages
by number of data items on the page.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Data Size (KBs)

Plaintext
Stored

Figure 4: CDF of total size of plaintext and stored
(ciphertext and signature) data for Facebook profile
pages.

exchange their current locations with friends but not third
parties, enabling functionality similar to that of Loopt [25]
without trusting the service provider.

The requirements for encryption performance of mobile
OSN clients are a bit different from their desktop counter-
parts. Because of their smaller screens and often slower net-

144

work connections, the requirements for decryption are less
demanding: when only a few messages may be retrieved or
displayed at a time, decrypting only a few items is necessary.
Conversely, mobile devices tend to have limited computation
power and limited battery life, so the operations themselves
should be reasonably interactive.

We cross-compiled the cpabe [2] libraries and their de-
pendencies (pbc [27], gmp, glib, openssl, gettext, libiconv,
and libintl) for the iPhone SDK 2.2.1 [4].2 Some of these
libraries (e.g., libcrypto from OpenSSL) are present on the
device but not included in the official SDK. Cryptographic
operations supported on the device may be implemented
using hardware acceleration when applications are written
using Apple’s defined APIs; writing directly to the OpenSSL
library forgoes these potential advantages. In other words,
our benchmark is sufficient to show that ABE is practical
on a widespread mobile device, but not intended to compare
ABE or AES performance from one device to another.

On a first-generation iPhone (620MHz ARM), decryption
of ABE encrypted text fragments smaller than 1KB takes
approximately 0.254 seconds. This value is the average time
to decrypt 40 randomly-generated messages of 40 different
sizes drawn uniformly at random from 0 to 4095 bytes of
5 different access structures having one to five attributes.
Message size and access structure have little effect: the mes-
sage itself is encrypted using AES-128, and the access struc-
ture appears to have a greater effect on the time to encrypt
than to decrypt. Encryption times average 0.926 seconds
with one attribute (an average of 25 messages of 25 sizes;
some of this time is likely consumed by AES-128 key gener-
ation) and 0.43 seconds for each additional attribute.

We believe that the 0.254 second object decryption time
compares favorably to the typical RTT of cellular data sys-
tems (Lee [22] reported a 417ms average RTT for 1x EV-DO)
and does not preclude a mobile Persona.

7. RELATED WORK
We present related work dealing with studies of OSN pri-

vacy, systems implementing privacy on OSNs, access control,
ABE, and systems built on ABE.
OSN studies. Several works examine the characteristics
and recent growth of OSNs [12, 17, 19, 28, 29]. Krishna-
murthy and Willis [20] study how OSNs share users’ per-
sonal data with third parties such as applications and ad-
vertisers. They note that Facebook places no restrictions
on the data that is shared with external applications. Ad-
vertisers use personal data, as well as information acquired
through cookies, to serve targeted ads.

Prior research has characterized privacy problems with
OSNs. Acquisti and Gross [1, 13] show that Facebook users
at CMU often share more data than they are aware of.
Lam et al. [21] study a Taiwanese OSN to show that users’
annotations compromise the privacy of others. Ahern et
al. [3] study Flickr to see how location information is leaked
through users’ photographs. Several studies [16, 18, 38] ex-
ploit the friend graph to infer characteristics about users.
Persona resolves these issues by allowing users to precisely
express the policies under which their data, including friend
information, is encrypted and stored.

2Patches to enable cross-compilation of these li-
braries using Apple’s gcc compiler are available at
http://www.cs.umd.edu/projects/persona

OSN privacy systems. The research community has rec-
ognized the problem of privacy in OSNs and proposed sev-
eral solutions which build on top of existing OSNs. NOYB [14]
hides an OSN user’s personal data by swapping it with data
“atoms” of other OSN users. NOYB provides a way to map
these atoms to their original contents. flyByNight [26] is a
Facebook application that facilitates secure one-to-one and
one-to-many messages between users. Finally, Lockr [34]
uses ACLs based on social attestations of the relationship
between two users, similar to how Persona distributes ASK s
to users that satisfy certain attributes. Persona and Lockr
both use XML-based formats to transfer privacy-protecting
structures.
Access control and ABE. In Persona, the attributes a
user has determines what data they can access. This re-
sembles role-based access control [11] and attribute-based
access control, which bases authorization decisions on the
attributes assigned to users [6, 40]. Attribute based encryp-
tion (ABE) was introduced as an application of a type of
identity based encryption (IBE) called fuzzy IBE [32]. Un-
like early ABE schemes, CP-ABE [5], which Persona uses,
binds ciphertexts to access structures while secret keys con-
tain attributes. Ciphertexts can be decrypted with a key
that contains a set of attributes that satisfies the access
structure. Multi-authority ABE [7, 23] removes the need
for transitive key translations but requires each user to have
a globally-unique identifier and the attribute set to be par-
titioned amongst the users.

Pirretti et al. [31] show how to build a dating social net-
work that only reveals information about a user if their at-
tributes match another user’s desired description. Unlike
Persona, their system relies on a single authority to gener-
ate all secret keys. Traynor et al. [35] introduce a tiered
architecture to improve the performance of ABE so that it
scales to millions of users.

8. DISCUSSION
Our Persona prototype and evaluation demonstrates new

functionality and reasonable performance. In this section,
we discuss unexplored questions a large-scale deployment
will have to confront.
Factoring applications. Persona was motivated by the
observation that current OSN applications have complete
access to user data. Current Persona applications, on the
other hand, have no access to user data and must oper-
ate entirely using data references. Applications that act on
user data must be given selective access as described in Sec-
tion 4.3. This approach is similar to how others [20] have
discussed statically classifying user data in OSNs for appli-
cation access.

An alternate design is to refactor applications into one
piece administered by the application provider (as now),
and another piece capable of transforming user data that
would be executed on a trusted host (likely, within the user’s
browser). Existing taint-tracking techniques [33, 39] can be
used to guarantee that user-data remains safe. This option
relieves the user from thinking about what data should be
released to which applications; however, application design
and implementation must undergo a substantial change.
Factored data. Persona decouples application metadata
from encrypted content. This may lead to cases when one
is available but not the other. Ideally, data and metadata
would share availability, but combining both might lead to

145

unacceptable performance or violate storage policy (about
where data might be stored). A scalable policy-compliant
design for a fate-sharing [8] dissemination infrastructure is
an open problem.
Deployment incentives. OSNs are popular, in part, be-
cause they are free. Persona’s design requires users to con-
tract with applications, and some applications, such as the
storage service, may have little incentive to provide free ser-
vice. Users may have to pay for this storage or agree to use
some other service or applications in exchange for free stor-
age. Other applications—for instance, versions of Doc—may
augment the metadata with advertisements, which may pro-
vide a sustaining deployment model. As privacy-enhanced
OSNs become popular, current OSN providers may choose
to incorporate privacy features, in effect supporting the Per-
sona + Facebook model we have implemented.

9. CONCLUSION
Privacy controls provided by existing OSNs are not suffi-

cient since they rely on trusting the OSNs with data from
which they can profit. We have shown how ABE and tradi-
tional public key cryptography can be combined to provide
the flexible, user-defined access control needed in OSNs. We
have described group-based access policies and the mecha-
nisms needed to provide decryption and authentication by
both groups and individuals. We have demonstrated the ver-
satility of these operations in an OSN design called Persona,
which provides privacy to users and the facility for creating
applications like those that exist in current OSNs.

To prove the feasibility of Persona, we implemented and
evaluated Persona on Facebook profile data. Median load
times in Persona are 2.3 seconds and the median size of the
encrypted profile data is 20.4 KB. We have shown that we
can achieve privacy in OSNs with acceptable performance
even on mobile devices.

Acknowledgments
We would like to thank Alan Mislove for providing us with
the Facebook profile data used in our evaluation. We would
also like to thank Balachander Krishnamurthy, Dov Gordon,
Katrina LaCurts, and our anonymous reviewers for their
assistance and comments. This work was supported in part
by NSF grant CNS-0626629.

10. REFERENCES
[1] A. Acquisti and R. Gross. Imagined communities:

Awareness, information sharing, and privacy on the
facebook. In PET, 2006.

[2] Advanced crypto software collection.
http://acsc.csl.sri.com/cpabe/.

[3] S. Ahern, et al. Over-exposed?: privacy patterns and
considerations in online and mobile photo sharing. In
Human Factors in Computing Systems, 2007.

[4] Apple iPhone SDK. http://developer.apple.com/iphone/.

[5] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy
attribute-based encryption. In Security and Privacy, 2007.

[6] P. A. Bonatti and P. Samarati. A uniform framework for
regulating service access and information release on the
web. Journal of Computer Security, 2002.

[7] M. Chase. Multi-authority attribute based encryption. In
TCC, 2007.

[8] D. Clark. The design philosophy of the darpa internet
protocols. In SIGCOMM, 1988.

[9] Facebook statement of rights and responsibilities.
http://www.facebook.com/press/info.php?statistics#
/terms.php?ref=pf.

[10] Facebook statistics.
http://www.facebook.com/press/info.php?statistics.

[11] D. F. Ferraiolo and D. R. Kuhn. Role-based access
controls. In National Computer Security Conference, 1992.

[12] M. Gjoka, M. Sirivianos, A. Markopoulou, and X. Yang.
Poking facebook: Characterization of OSN applications. In
WOSN, 2008.

[13] R. Gross and A. Acquisti. Information revelation and
privacy in online social networks (the facebook case). In
WPES, 2005.

[14] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in
online social networks. In WOSN, 2008.

[15] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King:
Estimating latency between arbitrary internet end hosts. In
IMC, 2002.

[16] J. He, W. W. Chu, and Z. V. Liu. Inferring privacy
information from social networks. In ISI, 2006.

[17] J. Kleinberg. Challenges in social network data: Processes,
privacy and paradoxes. In KDD, 2007. Invited talk.

[18] A. Korolova, R. Motwani, S. U. Nabar, and Y. Xu. Link
privacy in social networks. In Information and Knowledge
Mining (CIKM), 2008.

[19] B. Krishnamurthy. A measure of online social networks. In
COMSNETS, 2009.

[20] B. Krishnamurthy and C. E. Wills. Characterizing privacy
in online social networks. In WOSN, 2008.

[21] I.-F. Lam, K.-T. Chen, and L.-J. Chen. Involuntary
information leakage in social network services. In IWSEC,
2008.

[22] Y. Lee. Measured TCP performance in CDMA 1x EV-DO
network. In PAM, 2006.

[23] H. Lin, Z. Cao, X. Liang, and J. Shao. Secure threshold
multi authority attribute based encryption without a
central authority. In INDOCRYPT, 2008.

[24] Linkedin. http://www.linkedin.com/.
[25] Loopt. http://www.loopt.com.
[26] M. M. Lucas and N. Borisov. flybynight: Mitigating the

privacy risks of social networking. In WPES, 2008.
[27] B. Lynn. On the implementation of pairing-based

cryptosystems. Ph.D. thesis, Stanford, 2008.
[28] A. Mislove, et al. Measurement and analysis of online

social networks. In IMC, 2007.
[29] A. Mislove, et al. Growth of the flickr social network. In

WOSN, 2008.
[30] D. Naor, M. Naor, and J. B. Lotspiech. Revocation and

tracing schemes for stateless receivers. In CRYPTO, 2001.
[31] M. Pirretti, P. Traynor, P. McDaniel, and B. Waters.

Secure attribute-based systems. In ACM CCS, 2006.
[32] A. Sahai and B. Waters. Fuzzy identity-based encryption.

In Eurocrypt, 2005.
[33] U. Shankar, et al. Detecting format-string vulnerabilities

with type qualifiers. In USENIX Security, 2001.
[34] A. Tootoonchian, et al. Lockr: Social access control for web

2.0. In WOSN, 2008.
[35] P. Traynor, K. Butler, W. Enck, and P. McDaniel.

Realizing massive-scale conditional access systems through
attribute-based cryptosystems. In NDSS, 2008.

[36] Where I’ve been. http://apps.facebook.com/whereivebeen/.
[37] C. K. Wong, M. Gouda, and S. S. Lam. Secure group

communications using key graphs. SIGCOMM CCR,
28(4):68–79, 1998.

[38] W. Xu, X. Zhou, and L. Li. Inferring privacy information
via social relations. In ICDEW, 2008.

[39] H. Yin, et al. Capturing system-wide information flow for
malware detection and analysis. In CCS, 2007.

[40] T. Yu, M. Winslett, and K. E. Seamons. Supporting
structured credentials and sensitive policies through
interoperable strategies for automated trust negotiation.
Transactions on Information and System Security, 2003.

146

