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ABSTRACT

Energy expenses are becoming an increasingly important
fraction of data center operating costs. At the same time,
the energy expense per unit of computation can vary sig-
nificantly between two different locations. In this paper,
we characterize the variation due to fluctuating electricity
prices and argue that existing distributed systems should be
able to exploit this variation for significant economic gains.
Electricity prices exhibit both temporal and geographic vari-
ation, due to regional demand differences, transmission inef-
ficiencies, and generation diversity. Starting with historical
electricity prices, for twenty nine locations in the US, and
network traffic data collected on Akamai’s CDN, we use sim-
ulation to quantify the possible economic gains for a realistic
workload. Our results imply that existing systems may be
able to save millions of dollars a year in electricity costs, by
being cognizant of locational computation cost differences.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed
Systems

General Terms

Economics, Management, Performance

1. INTRODUCTION
With the rise of “Internet-scale” systems and “cloud com-

puting”services, there is an increasing trend toward massive,
geographically distributed systems. The largest of these are
made up of hundreds of thousands of servers and several data
centers. A large data center may require many megawatts
of electricity [1], enough to power thousands of homes.

Millions of dollars must be spent annually on the electric-
ity needed to power one such system. Furthermore, these
already large systems are increasing in size at a rapid clip,
outpacing data center energy efficiency gains [2], and elec-
tricity prices are expected to rise.
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Company Servers Electricity Cost
eBay 16K ∼0.6×105 MWh ∼$3.7M
Akamai 40K ∼1.7×105 MWh ∼$10M
Rackspace 50K ∼2×105 MWh ∼$12M
Microsoft >200K >6×105 MWh >$36M
Google >500K >6.3×105 MWh >$38M

USA (2006) 10.9M 610×105 MWh $4.5B

MIT campus 2.7×105MWh $62M

Figure 1: Estimated annual electricity costs for large

companies (servers and infrastructure) @ $60/MWh.

These are conservative estimates, meant to be lower

bounds. See §2.1 for derivation details. For scale, we

have included the actual 2007 consumption and utility

bill for the MIT campus, including dormitories and labs.

Organizations such as Google, Microsoft, Amazon, Ya-
hoo!, and many other operators of large networked systems
cannot ignore their energy costs. A back-of-the-envelope cal-
culation for Google suggests it consumes more than $38M
worth of electricity annually (figure 1). A modest 3% reduc-
tion would therefore exceed a million dollars every year. We
project that even a smaller system like Akamai’s1 consumes
an estimated $10M worth of electricity annually2.

The conventional approach to reducing energy costs has
been to reduce the amount of energy consumed [3, 4]. New
cooling technologies, architectural redesigns, DC power, multi-
core servers, virtualization, and energy-aware load balanc-
ing algorithms have all been proposed as ways to reduce the
power demands of data centers. That work is complemen-
tary to ours.

This paper develops and analyzes a new method to reduce
the energy costs of running large Internet-scale systems. It
relies on two key observations:

1. Electricity prices vary. In those parts of the U.S. with
wholesale electricity markets, prices vary on an hourly
basis and are often not well correlated at different lo-
cations. Moreover, these variations are substantial, as
much as a factor of 10 from one hour to the next. If,
when computational demand is below peak, we can dy-
namically move demand (i.e., route service requests) to
places with lower prices, we can reduce energy costs.

2. Large distributed systems already incorporate request
routing and replication. We observe that most Internet-
scale systems today are geographically distributed, with

1This paper covers work done outside Akamai and does not rep-
resent the official views of the company.
2Though Akamai seldom pays directly for electricity, it pays for
it indirectly as part of co-location expenses.
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machines at tens or even hundreds of sites around the
world. To provide clients good performance and to
tolerate faults, these systems implement some form of
dynamic request routing to map clients to servers, and
often have mechanisms to replicate the data necessary
to process requests at multiple sites.

We hypothesize that by exploiting these observations, large
systems can save a significant amount of money, using mech-
anisms for request routing and replication that they already
implement. To explore this hypothesis, we develop a simple
cost-aware request routing policy that preferentially maps
requests to locations where energy is cheaper.

Our main contribution is to identify the relevance of elec-
tricity price differentials to large distributed systems and to
estimate the cost savings that could result in practice if the
scheme were deployed.

Problem Specification. Given a large system composed
of server clusters spread out geographically, we wish to map
client requests to clusters such that the total electricity cost
(in dollars, not Joules) of the system is minimized. For sim-
plicity, we assume that the system is fully replicated. Addi-
tionally, we optimize for cost every hour, with no knowledge
of the future. This rate of change is slow enough to be com-
patible with existing routing mechanisms, but fast enough
to respond to electricity market fluctuations. Finally, we in-
corporate bandwidth and performance goals as constraints.
Existing frameworks already exist to optimize for bandwidth
and performance; modeling them as constraints makes it
possible to add our process to the end of the existing opti-
mization pipeline.

Note that our analysis is concerned with reducing cost, not
energy. Our approach may route client requests to distant
locations to take advantage of cheap energy. These longer
paths may cause overall energy consumption to rise slightly.

Energy Elasticity. The maximum reduction in cost our
approach can achieve hinges on the energy elasticity of the
clusters. This is the degree to which the energy consumed by
a cluster depends on the load placed on it. Ideally, clusters
would draw no power in the absence of load. In the worst
case, there would be no difference between the peak power
and the idle power of a cluster. Present state-of-the-art sys-
tems [5, 6] fall somewhere in the middle, with idle power
being around 60% of peak. A system with inelastic clusters
is forced to always consume energy everywhere, even in re-
gions with high energy prices. Without adequate elasticity,
we cannot effectively route the system’s power demand away
from high priced areas.

Zero-idle power could be achieved by aggressively consol-
idating, turning off under-utilized components, and always
activating only the minimum number of machines needed to
handle the offered load. At present, achieving this without
impacting performance is still an open challenge. However,
there is an increasing interest in energy-proportional servers
[6] and dynamic server provisioning techniques are being ex-
plored by both academics and industry [7, 8, 9, 10, 11].

Results. To conduct our analysis, we use trace-driven
simulation with real-world hourly (and daily) energy prices
obtained from a number of data sources. We look at 39
months of hourly electricity prices from 29 US locations.
Our request traces come from the Akamai content distribu-
tion network (CDN): we obtained 24-days worth of request

traffic data (five-minute load) for each server cluster located
at a commercial data center in the U.S. We used these data
sets to estimate the performance of our simple cost-aware
routing scheme under different constraints.

We show that:

• Existing systems can reduce energy costs by at least
2%, without any increase in bandwidth costs or sig-
nificant reduction in client performance (assuming a
Google-like energy elasticity, an Akamai-like server dis-
tribution and 95/5 bandwidth constraints). For large
companies this can exceed a million dollars a year.

• Savings rapidly increase with energy elasticity: in a
fully elastic system, with relaxed bandwidth constraints,
we can reduce energy cost by over 30% (around 13%
if we impose strict bandwidth constraints), without a
significant increase in client-server distances.

• Allowing client-server distances to increase leads to in-
creased savings. If we remove the distance constraint,
a dynamic solution has the potential to beat a static
solution (i.e., place all servers in cheapest market) by a
substantial margin (45% maximum savings versus 35%
maximum savings).

Presently, energy cost-aware routing is relevant only to
very large companies. However, as we move forward and
the energy elasticity of systems increases, not only will this
routing technique become more relevant to the largest sys-
tems, but much smaller systems will also be able to achieve
meaningful savings.

Paper Organization. In the next section, we provide
some background on server electricity expenditure and sketch
the structure of US energy markets. In section 3 we present
data about the variation in regional electric prices. Section
4 describes the Akamai data set used in this paper. Section
5 outlines the energy consumption model used in the simu-
lations covered in section 6. Section 7 considers alternative
mechanisms for market participation. Section 8 presents
some ideas for future work, before we conclude.

2. BACKGROUND
This section first presents evidence that electricity is be-

coming an increasingly important economic consideration,
and then describes the salient features of the wholesale elec-
tricity markets in the U.S.

2.1 The Scale of Electricity Expenditures
In absolute terms, servers consume a substantial amount

of electricity. In 2006, servers and data centers accounted for
an estimated 61 million MWh, 1.5% of US electricity con-
sumption, costing about 4.5 billion dollars [3]. At worst, by
2011, data center energy use could double. At best, by re-
placing everything with state-of-the-art equipment, we may
be able to reduce usage in 2011 to half the current level [3].

Most companies operating Internet-scale systems are se-
cretive about their server deployments and power consump-
tion. Figure 1 shows our estimates for several such com-
panies, based on back-of-the-envelope calculations3. The

3Energy in Wh ≈ n·(Pidle+(Ppeak−Pidle)·U+(PUE−1)·Ppeak)·
365 · 24, where: n is server count, Ppeak is server peak power in
Watts, Pidle is idle power, and U is average server utilization.
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RTO Region Some Regional Hubs
ISONE New England Boston (MA-BOS), Maine (ME),

Connecticut (CT)
NYISO New York NYC, Albany (CAPITL), Buffalo

(WEST), PJM import (PJM)
PJM Eastern Chicago (CHI), Virgina (DOM),

New Jersey (NJ)
MISO Midwest Peoria (IL), Minnesota (MN),

Indiana (CINERGY)
CAISO California Palo Alto (NP15), LA (SP15)
ERCOT Texas Dallas (N), Austin (S)

Figure 2: The different regions studied in this paper.

The listed hubs provide a sense of RTO coverage and a

reference to map electricity market location identifiers

(hub NP15) to real locations (Palo Alto).

server numbers are from public disclosures for eBay [12] and
Rackspace (Q1 2009 earnings report). To calculate energy,
we have made the following assumptions: average data cen-
ter power usage effectiveness (PUE)4 is 2.0 [3] and is cal-
culated based on peak power; average server utilization is
around 30% [6, 7]; average peak server power usage is 250
Watts (based on measurements of actual servers at Akamai);
and idle servers draw 60-75% of their peak power [5, 8]. Our
numbers for Microsoft are based on company statements [13]
and energy figures mentioned in a promotional video [14].

To estimate Google’s power consumption, we assumed
500K servers (based on an old, widely circulated number
[13]), operating at 140 Watts each [5], a PUE of 1.3 [4] and
average utilization around 30% [6]. Such a system would
consume more than 6.3×105 MWh, and would incur an an-
nual electricity bill of nearly $38 million (at $60 per MWh
wholesale rate). These numbers are consistent with an in-
dependent calculation we can make. comScore estimated
that Google performed about 1.2B searches/day in August
2007 [15], and Google officially stated recently that each
search takes 1 kJ of energy on average (presumably amor-
tized to include indexing and other costs). Thus, search
alone works out to 1 × 105 MWh in 2007. Google’s servers
handle GMail, YouTube, and many other applications, so
our earlier estimates seem reasonable. Google may well have
more than a million servers [1], so an annual electric bill ex-
ceeding $80M wouldn’t be surprising.

Akamai’s electricity costs represent indirect costs not seen
by the company itself. Like others who rely on co-location
facilities, Akamai seldom pays directly for electricity. Power
is mostly built into the billing model, with charges based on
provisioned capacity rather than consumption. In section
7 we discuss why our ideas are relevant even to those not
directly charged per-unit of electricity they use.

2.2 Wholesale Electricity Markets
Although market details differ regionally, this section pro-

vides a high-level view of deregulated electricity markets,
providing a context for the rest of the paper. The discus-
sion is based on markets in the United States.

Generation. Electricity is produced by government util-
ities and independent power producers from a variety of
sources. In the United States, coal dominates (nearly 50%),
followed by natural gas (∼20%), nuclear power (∼20%), and
hydroelectric generation (6%) [16].

4A measure of data center energy efficiency.

Different regions may have very different power genera-
tion profiles. For example, in 2007, hydroelectric sources
accounted for 74% of the power generated in Washington
state, while in Texas, 86% of the energy was generated us-
ing natural gas and coal.

Transmission. Producers and consumers are connected
to an electric grid, a complex network of transmission and
distribution lines. Electricity cannot be stored easily, so
supply and demand must continuously be balanced.

In addition to connecting nearby nodes, the grid can be
used to transfer electricity between distant locations. The
United States is divided into eight reliability regions, with
varying degrees of inter-connectivity. Congestion on the
grid, transmission line losses (est. 6% [17] in 2006), and
boundaries between regions introduce distribution inefficien-
cies and limit how electricity can flow.

Market Structure. In each region, a pseudo-government-
al body, a Regional Transmission Organization (RTO), man-
ages the grid (figure 2). An RTO provides a central author-
ity that sets up and directs the flow of electricity between
generators and consumers over the grid. RTOs also provide
mechanisms to ensure the short-term reliability of the grid.

Additionally, RTOs administer wholesale electricty mar-
kets. While bilateral contracts account for the majority of
the electricity that flows over the grid, wholesale electric-
ity trading has been growing rapidly, and presently covers
about 40% of total electricity.

Wholesale market participants can trade forward contracts
for the delivery of electricity at some specified hour. In or-
der to determine prices for these contracts, RTOs such as
PJM use an auctioning mechanism: power producers present
supply offers (possibly price sensitive), consumers present
demand bids (possibly price sensitive); and a coordinating
body determines how electricity should flow and sets prices.
The market clearing process sets hourly prices for the dif-
ferent locations in the market. The outcomes depend not
only on bids and offers, but also account for a number of
constraints (grid-connectivity, reliability, etc.).

Each RTO operates multiple parallel wholesale markets.
There are two common market types:

Day-ahead markets (futures) provide hourly prices for
delivery during the following day. The outcome is
based on expected load5.

Real-time markets (spot) are balancing markets where
prices are calculated every five minutes or so, based on
actual conditions, rather than expectations. Typically,
this market accounts for a small fraction of total energy
transactions (less than 10% of total in NYISO).

Generally speaking, the most expensive active generation
resource determines the market clearing price for each hour.
The RTO attempts to meet expected demand by activating
the set of resources with the lowest operating costs. When
demand is low, the base-load power plants, such as coal and
nuclear can fulfill it. When demand rises, additional re-
sources, such as natural gas turbines, need to be activated.

Security constraints, line losses and congestion costs also
impact price. When transmission system restrictions, such
as line capacities, prevent the least expensive energy sup-
plier from serving demand, congestion is said to exist. More

5Hour-ahead markets, not discussed here, are analogous.

125



$
/M

W
h Portland, OR (MID-C)

 50

 100

 150
$
/M

W
h Richmond, VA (Dominion)

 50

 100

 150

$
/M

W
h Houston, TX (ERCOT-H)

 50

 100

 150

$
/M

W
h Palo Alto, CA (NP15)

 0

 50

 100

 150

Jan 06 May 06 Sep 06 Jan 07 May 07 Sep 07 Jan 08 May 08 Sep 08 Jan 09 May      

Figure 3: Daily averages of day-ahead peak prices at different hubs [18]. The elevation in 2008 correlates with record

high natural gas prices, and does not affect the hydroelectric dominated Northwest. The Northwest consistently

experiences dips near April (this seems to be correlated with seasonal rainfall). Correlated with the global economic

downturn, recent prices in all four locations exhibit a downward trend.

 0

 25

 50

 75

 100

 125

2009-02-10 2009-02-14 2009-02-18

P
ri
c
e
 $

/M
W

h

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed

Real-time 5-min Real-time hourly Day-ahead hourly

 0

 25

 50

 75

 100

 125

2009-03-03 2009-03-07 2009-03-11

P
ri
c
e
 $

/M
W

h

Time (EST/EDT)

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed

Figure 4: Comparing price variation in different whole-

sale markets, for the New York City hub. The top graph

shows a period when prices were similar across all mar-

kets; the bottom graph shows a period when there was

significantly more volatility in the real-time market.

expensive generation units will then need to be activated,
driving up prices. Some markets include an explicit conges-
tion cost component in their prices.

Surprisingly, negative prices can show up for brief periods,
representing conditions where if energy were to be consumed
at a specific location at a specific time the overall efficiency
of the system would increase.

Market boundaries introduce economic transaction ineffi-
ciencies. As we shall see later, even geographically close lo-
cations in different markets tend to see uncorrelated prices.
Part of the problem is that different markets have evolved
using different rules, pricing models, etc.

Clearly, the market for electricity is complex. In addition
to the factors mentioned here, many local idiosyncrasies ex-
ist. In this paper, we use a relatively simple market model
that assumes the following:

1. Real-time prices are known and vary hourly.

2. The electric bill paid by the service operator is propor-
tional to consumption and indexed to wholesale prices.

3. The request routing behavior induced by our method
does not significantly alter prices and market behavior.

The validity of the second assumption depends upon the
extent to which companies hedge their energy costs by con-
tractually locking in fixed pricing (see section 7). A large

Window 5 min 1 hr 3 hr 12 hr 24 hr
Real-time σ 28.5 24.8 21.9 18.1 15.6
Day-ahead σ N/A 20.0 19.4 17.1 16.0

Figure 5: The real-time market is more variable at short

time-scales than the day-ahead market. Standard devi-

ations for Q1 2009 prices at the NYC hub are shown,

averaged using different window sizes.

body of economic literature deals with the structure and evo-
lution of energy markets [19, 20, 21], market failures, and
arbitrage opportunities for securities traders (e.g. [22, 23]).

3. EMPIRICAL MARKET ANALYSIS
We posit that imperfectly correlated variations in local

electricity prices can be exploited by operators of large geo-
graphically distributed systems to save money. Rather than
presenting a theoretical discussion, we take an empirical ap-
proach, grounding our analysis in historical market data ag-
gregated from government sources [19, 16], trade publication
archives [18], and public data archives maintained by the dif-
ferent RTOs. We use price data for 30 locations, covering
January 2006 through March 2009.

3.1 Price Variation
Geographic price differentials are what really matter to

us, but it is useful to first get a feel for the behaviour of
individual prices.

Daily Variation. Figure 3 shows daily average prices
for four locations6, from January 2006 through April 2009.
Although prices are relatively stable at long time scales, they
exhibit a significant amount of day-to-day volatility, short-
term spikes, seasonal trends, and dependencies on fuel prices
and consumer demand. Some locations in the figure are
visibly correlated, but hourly prices are not correlated (§3.2).

Different Market Types. Spot and futures markets
have different price dynamics. Figures 4 and 5 illustrate the
difference for NYC. Compared to the day-ahead market, the
hourly real-time (RT) market is more volatile, with more
high-frequency variation, and a lower average price. The
underlying five minute RT prices are even more volatile.

6The Northwest is an important region, but lacks an hourly
wholesale market, forcing us to omit the region from the remain-
der of our analysis.
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Location RTO Mean∗ StDev∗ Kurt.∗

Chicago, IL PJM 40.6 26.9 4.6
Indianapolis, IN MISO 44.0 28.3 5.8
Palo Alto, CA CAISO 54.0 34.2 11.9
Richmond, VA PJM 57.8 39.2 6.6
Boston, MA ISONE 66.5 25.8 5.7
New York, NY NYISO 77.9 40.26 7.9

Figure 6: Real-time market statistics, covering

hourly prices from January 2006 through March 2009

(∗statistics are from the 1% trimmed data).
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Figure 7: Histograms of hour-to-hour change in real-

time hourly prices for two locations, over the 39-month

period. Both distributions are zero-mean, Gaussian-like,

with very long tails.

For the remainder of this paper, we focus exclusively on
the RT market. Our goal is to exploit geographically uncor-
related volatility, something that is more common in the RT
market. We restrict ourselves to hourly prices, but speculate
that the additional volatility in five minute prices provides
further opportunities.

Figure 6 provides additional statistics for hourly RT prices.

Hour-to-Hour Volatility. As seen in figure 4, the hour-
to-hour variation in NYC’s RT prices can be dramatic. Fig-
ure 7 shows the distribution of the hourly change for Palo
Alto and Chicago. At each location, the price per MWh
changed hourly by $20 or more roughly 20% of the time. A
$20 step represents 50% of the mean price for Chicago. Fur-
thermore, the minimum and maximum price during a single
day can easily differ by a factor of 2.

The existence of rapid price fluctuations reflects the fact
that short term demand for electricity is far more elastic
than supply. Electricity cannot always be efficiently moved
from low demand areas to high demand areas, and producers
cannot always ramp up or down easily.

3.2 Geographic Correlation
Our approach would fail if hourly prices are well correlated

at different locations. However, we find that locations in
different regional markets are never highly correlated, even
when nearby, and that locations in the same region are not
always well correlated.

Figure 8 shows a scatter-plot of pairwise correlation and
geographic distance7. No pairs were negatively correlated.
Note how correlation decreases with distance. Further, note
the impact of RTO market boundaries: most pairs drawn
from the same RTO lie above the 0.6 correlation line, while
all pairs from different regions lie below it8. We also see

7We have verified our results using subsets of the data (e.g. last
12 months), mutual information (Ix,y), shifted signals, etc.
8
Ix,y much more clearly divides the data between same-RTO and

different-RTO pairs, suggesting that the small overlap in figure 8
is due to the existence of non-linear relationships within NYISO
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Figure 9: Variation of price differentials with time.

a surprising lack of diversity within some regions: LA and
Palo Alto have a coefficient of 0.94.

Hourly prices are not correlated at short time-scales, but
we should not expect prices to be independent. Natural gas
prices, for example, will introduce some coupling (see figure
3) between distant locations.

3.3 Price Differentials
Figure 9 shows hourly price differentials for two pairs of

locations over an eight day period (both pairs have mean
differentials close to zero). The three locations are far from
each other and in different RTOs. We see price spikes (some
extend far off the scale, the largest is $1900) and extended
periods of price asymmetry. Sometimes the asymmetry favours
one, sometimes the other. This suggests that a pre-determined
assignment of clients to servers is not optimal.

Differential Distributions. Consider two locations. In
order for our dynamic approach to yield substantial savings
over a static solution, the price differential between those
locations must vary in time, and the distribution of this dif-
ferential should ideally have a zero mean and a reasonably
high variance. Such a distribution would imply that neither
site is strictly better than the other, but also that a dynamic
solution, always buying from whichever site is least expen-
sive that hour, could yield meaningful savings. Additionally,
the dynamic approach could win when presented with two
locations having uncorrelated periods of price elevation.

and ERCOT, not detected by the correlation coefficient.
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Figure 10 shows the pairwise differential distributions for
some locations, for the 2006-2009 data. The California-
Virginia (figure 10a) and Texas-Virginia (figure 10b) dis-
tributions are zero-mean with a high variance. There are
many other such pairs9.

Boston-NYC (figure 10c) is skewed, since Boston tends
to be cheaper than NYC, but NYC is less expensive 36%
of the time (the savings are greater than $10/MWh 18% of
the time). Thus, even with such a skewed distribution, there
exists an opportunity to dynamically exploit differentials for
meaningful savings.

Unsurprisingly, a number of pairs exist where one location
is strictly better than the other, and dynamic adaptation is
unnecessary. Chicago-Virginia (figure 10d) is an example:
Virginia is less expensive 8% of the time, but the savings
almost never exceed $10/MWh.

The dispersion introduced by a market boundary can be
seen in the dynamically exploitable Chicago-Peoria distribu-
tion (figure 10e).

Evolution in Time. The price differential distributions
do not remain static in time. Figure 11 shows how the
PaloAlto-Virginia distribution changed from month to month.
A sustained price asymmetry may exist for many months,
before reversing itself. The spread of prices in one month
may double the next month.

Time-of-Day Price differentials depend on the time-of-
day. For instance, because California and Virginia are in
different time zones, peak demand does not overlap. This is
likely an important factor shaping the price differential.

Figure 12 shows how the hour of day affects the differ-
entials for three location pairs. For PaloAlto-Virginia, we
see a strong dependency on the hour. Before 5am (eastern),
Virginia has a significant edge; by 6am the situation has re-
versed; from 1-4pm neither is better. For Boston-NYC we
see a different kind of dependency: from 1am-7am neither

9There are 60 other pairs (a set of 16 hubs) with |µ| ≤ 5∧σ ≥ 50;
and 86 pairs (a set of 28 hubs) with |µ| ≤ 5 ∧ σ ≥ 25.
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Figure 13: For PaloAlto-Virginia, short-lived price dif-

ferentials account for most of the time.

site is better, at all other times Boston has the edge. The
effect of hour-of-day on Chicago-Peoria is less clear.

Differential Duration. We define the duration of a sus-
tained price differential as the number of hours one location
is favoured over another by more than $5/MWh. As soon
as the differential falls below this threshold, or reverses to
favour the other location, we mark the end of the differential.

Figure 13 shows how much time was spent in short-duration
price-differentials, for PaloAlto-Virginia. Short differentials
(<3 hrs) are more frequent than other types. Medium length
differentials (<9 hrs) are common. Differentials that last
longer than a day are rare, for a balanced pair like this.

4. AKAMAI: TRAFFIC AND BANDWIDTH
In order to understand the interaction of real workloads

with electricity prices, we acquired a data set detailing traffic
on Akamai’s infrastructure. The data covers 24 days worth
of traffic on a large subset of Akamai’s servers, with a peak
of over 2 million hits/sec (figure 14). The 9-region traffic is
the subset of servers for which we have electricity price data.

We use the Akamai traffic because it is a realistic work-
load. Akamai has over 2000 content provider customers in
the US. Hence, the traffic represents a broad user base.
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Figure 14: Traffic in the Akamai data set. We see a peak hit rate of over 2 million hits per second. Of this, about

1.25 million hits come from the US. The traffic in this data set comes from roughly half of the servers Akamai runs.

In comparison, in total, Akamai sees around 275 billion hits/day.

However, Akamai does not use aggressive server power
management, their CDN is sensitive to latency and their
workload contains a large fraction of computationally triv-
ial hits (e.g., fetches of well cached objects). So our work
is far less relevant to Akamai than to systems where more
energy elasticity exists and workloads are computationally
intensive. Furthermore, in mapping clients to servers, Aka-
mai’s system balances a number of concerns—trying to opti-
mize performance, handle partially replicated CDN objects,
optimize network bandwidth costs, etc.

Traffic Data. Traffic data was collected at 5-minute in-
tervals on servers housed in Akamai’s public clusters. Aka-
mai has two types of clusters: public, and private. Pri-
vate clusters are typically located inside of universities, large
companies, small ISPs, and ISPs outside the US. These clus-
ters are dedicated to serving a specific user base, e.g., the
members of a university community, and no others. Pub-
lic clusters are generally located in commercial co-location
centers and can serve any users world-wide. For any user
not served by a private cluster, Akamai has the freedom to
choose which of its public clusters to direct the user. Clients
that end up at public clusters tend to see longer network
paths than clients that can be served at private clusters.

The 5-minute data contains, for each public cluster: the
number of hits and bytes served to clients; a rough geogra-
phy of where those clients originated; and the load in each of
the clusters. In addition, we surveyed the hardware used in
the different clusters and collected values for observed server
power usage. We also looked at the top-level mapping sys-
tem to see how name-servers were mapped to clusters.

In the data we collected, the geographic localization of
clients is coarse: they are mapped to states in the US, or
countries. If multiple clusters exist in a city, we aggregate
them together and treat them as a single cluster. This affects
our calculation of client-server distances in §6.

Bandwidth Costs. An important contributor to data
center costs is bandwidth, and there may be large differ-
ences between costs on different networks, and sometimes
on the same network over time. Bandwidth costs are signif-
icant for Akamai, and thus their system is aggressively op-
timized to reduce bandwidth costs. We note that changing
Akamai’s current assignments of clients to clusters to reduce
energy costs could increase its bandwidth costs (since they
have been optimized already). Right now the portion of co-
location cost attributable to energy is less than but still a
significant fraction of the cost of bandwidth. The relative
cost of energy versus bandwidth has been rising. This is
primarily due to decreases in bandwidth costs.

We cannot cannot ignore bandwidth costs in our analysis.
The complication is that the bandwidth pricing specifics are
considered to be proprietary information. Therefore, our
treatment of bandwidth costs in this paper will be relatively
abstract.

Akamai does not view bandwidth prices as being geo-
graphically differentiated. In some instances, a company
as large as Akamai can negotiate contracts with carriers on
a nationwide basis. Smaller regional providers may provide
transit for free. Prices are usually set per network port, us-
ing the basic 95/5 billing model: traffic is divided into five
minute intervals and the 95th percentile is used for billing.

Our approach in this paper is to estimate 95th percentiles
from the traffic data, and then to constrain our energy-price
rerouting so that it does not increase the 95th percentile
bandwidth for any location.

Client-Server Distances. Lacking any network level
data on clients, we use geographic distance as a coarse proxy
for network performance in our simulations. We see some
evidence of geo-locality in the Akamai traffic data, but there
are many cases where clients are not mapped to the near-
est cluster geographically. One reason is that geographical
distance does not always correspond to optimal network per-
formance. Another possibility is that the system is trying
to keep those clients on the same network, even if Akamai’s
servers on that network are geographically far away. Yet
another possibility is that clients are being moved to distant
clusters because of 95/5 bandwidth constraints.

5. MODELING ENERGY CONSUMPTION
In order to estimate by how much we can reduce energy

costs, we must first model the system’s energy consumption
for each cluster. We use data from the Akamai CDN as a
representative real-world workload. This data is used to de-
rive a distribution of client activity, cluster sizes, and cluster
locations. We then use an energy model to map prices and
cluster-traffic allocations to electricity expenses. The model
is admittedly simplistic. Our goal is not to provide accurate
figures, but rather to estimate bounds on savings.

5.1 Cluster Energy Consumption
We model the energy consumption of a cluster as be-

ing proportional, roughly linear, to its utilization. Multiple
studies have shown that CPU utilization is a good estimator
for power usage [5, 8]. Our model is adapted from Google’s
empirical study of a data center [5] in which their model
was found to accurately (less than 1% error) predict the dy-
namic power drawn by a group of machines (20-60 racks).

129



We augment this model to fill in some missing pieces and
parametrize it using other published studies and measure-
ments of servers at Akamai.

Let Pcluster be the power usage of a cluster, and let ut be
its average CPU utilization (between 0 and 1) at time t:

Pcluster(ut) = F (n) + V (ut, n) + ǫ

Where n is the number of servers in the cluster, F is the
fixed power, V is the variable power, and ǫ is an empirically
derived correction constant (see [5]).

F (n) = n ·
`

Pidle + (PUE − 1) · Ppeak

´

V (ut, n) = n · (Ppeak − Pidle) · (2ut − u
r
t )

Where Pidle is the average idle power draw of a single server,
Ppeak is the average peak power, and the exponent r is an
empirically derived constant equal to 1.4 (see [5]). The equa-
tion for V is taken directly from the original paper. A linear
model (r = 1) was also found to be reasonably accurate [5].
We added the PUE component, since the Google study did
not account for cooling etc.

With power-management, the idle power consumption of a
server can be as low as 50-65% of the peak power consump-
tion, which can range from 100-250W [5, 7, 8]. Without
power-management an off-the-shelf server purchased in the
last several years averages around 250W and draws ∼95%
of its peak power when idle (based on measured values).

Ultimately, we want to use this model in simulation to
estimate the maximum percentage reduction in the energy
costs of some server deployment pattern. Consequently, the
absolute values chosen for Ppeak and Pidle are unimportant:
their ratio is what matters. In fact, it turns out that the

value Pcluster(0)
Pcluster(1)

is critical in determining the savings that

can be achieved using price-differential aware routing.
Ideally, Pcluster(0) would be zero: an idle cluster would

consume no energy. At present, achieving this without im-
pacting performance is still an open challenge. However,
there is an increasing interest in energy-proportional com-
puting [6] and dynamic server provisioning techniques are
being explored by both academics and industry [7, 8, 9, 10,
11]. We are confident that Pcluster(0) will continue to fall.

5.2 Increase in Routing Energy
In our scheme, clients may be routed to distant servers

in search of cheap energy. From an energy perspective,
this network path expansion represents additional work that
must be performed by something. If this increase in energy
were significant, network providers might attempt to pass
the additional cost on to the server operators. Given what
we know about bandwidth pricing (§4), a small increase in
routing energy should not impact bandwidth prices. Alter-
natively, server operators may bear all the increased energy
costs (suppose they run the intermediate routers).

A simple analysis suggests that the increased path lengths
will not significantly alter energy consumption. Routers are
not designed to be energy proportional and the energy used
by a packet to transit a router is many orders of magnitude
below the energy expended at the endpoints (e.g., Google’s 1
kJ/query [24]). We estimate that the average energy needed
for a packet to pass through a core router is on the order of
2 mJ [25]10 . Further we estimate that the incremental en-

10Reported for a Cisco GSR 12008 router: 540k mid-sized pack-
ets/sec and 770 Watts measured.

ergy dissipated by each packet passing through a core router
would be as low as a 50 µJ per medium-sized packet [25]11.

We must also consider what happens if the new routes
overload existing routers. If we use enough additional band-
width through a router it may have to be upgraded to higher
capacity hardware, increasing the energy significantly. How-
ever, we could prevent this by incorporating constraints, like
the 95/5 bandwidth constraints we use.

6. SIMULATION: PROJECTING SAVINGS
In order to test the central thesis of this paper, we con-

ducted a number of simulations, quantifying and analysing
the impact of different routing policies on energy costs and
client-server distance.

Our results show that electricity costs can plausibly be re-
duced by up to 40% and that the degree of savings primarily
depends on the energy elasticity of the system, in addition
to bandwidth and performance constraints. We simulate
Akamai’s 95/5 bandwidth constraints and show that overall
system costs can be reduced. We also sketch the relation-
ship between client-server distance and savings. Finally we
investigate how delaying the system’s reaction to price dif-
ferentials affects savings.

6.1 Simulation Strategy
We constructed a simple discrete time simulator that step-

ped through the Akamai usage statistics, letting a routing
module (with a global view of the network) allocate traffic to
clusters at each time step. Using these allocations, we mod-
eled each cluster’s energy consumption, and used observed
hourly market prices to calculate energy expenditures. Be-
fore presenting the results, we provide some details about
our simulation setup.

Electricity Prices. We used hourly real-time market
prices for twenty-nine different locations (hubs). However,
we only have traffic data for Akamai public clusters in nine of
these locations. Therefore, most of the simulations focused
on these nine locations. Our data set contained 39 months
of price data, spanning January 2006 through March 2009.
Unless noted otherwise, we assumed the system reacted to
the previous hour’s prices.

Traffic and Server Data. The Akamai workload data
set contains 5-minute samples for the hits-per-second ob-
served at public clusters in twenty five cities, for a period of
24 days and some hours. Each sample also provides a map,
specifying where hits originated, grouping clients by state,
and which city they were routed to.

We had to discard seven of these cities because of a lack
of electricity market data for them. The remaining eighteen
cities were grouped by electricity market hub, as nine ‘clus-
ters’. In our 24-day simulation, we used the traffic incident
on these nine clusters.

In order to simulate longer periods we derived a syn-
thetic workload from the 24-day Akamai workload (US traf-
fic only). We calculated an average hit rate For every hub
and client state pair. We produced a different average for
each hour of the day and each day of the week.

Additionally, the Akamai data allowed us to derive capac-

11Reported: power consumption of idle router is 97% the peak
power. In the future, power-aware hardware may reduce this
disparity between the marginal and average energy.
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Figure 15: The system’s energy elasticity is key in de-

termining the degree of savings price-conscious routing

can achieve. Further, obeying existing 95/5 bandwidth

constraints reduces, but does not eliminate savings. The

graph shows 24-day savings for a number of different

PUE and Pidle values with a 1500km distance threshold.

The savings for each energy model are given as a per-

centage of the total electricity cost of running Akamai’s

actual routing scheme under that energy model.

ity constraints and the 95th percentile hits and bandwidth
for each cluster. Capacity estimates were derived using ob-
served hit rates and corresponding region load level data
provided by Akamai. Our simulations use hits rather than
the bandwidth numbers from the data.

Most of our simulations used Akamai’s geographic server
distribution. Although the details of the distribution may
introduce artifacts into our results, this is a real-world distri-
bution. As such, we feel relying on it rather than relying on
synthetic distributions makes our results more compelling.

Routing Schemes. In our simulations we look at two
routing schemes: Akamai’s original allocation; and a dis-
tance constrained electricity price optimizer.

Given a client, the price-conscious optimizer maps it to a
cluster with the lowest price, only considering clusters within
some maximum radial geographic distance. For clients that
do not have any clusters within that maximum distance,
the routing scheme finds the closest cluster and considers
any other nearby clusters (< 50km). If the selected cluster
is nearing its capacity (or the 95/5 boundary), the optimizer
iteratively finds another good cluster.

The price optimizer has two parameters that modulate
its behaviour: a distance threshold and a price threshold.
Any price differentials smaller than the price threshold are
ignored (we use $5/MWh). Setting the distance threshold
to zero, gives an optimal distance scheme (select the cluster
geographically closest to client); setting it to a value larger
than the East-West coast distance gives an optimal price
scheme (always select the cluster with the lowest price).

We are not proposing this as a candidate for implemen-
tation, but it allows us to benchmark how well a price-
conscious scheme could do and to investigate trade-offs be-
tween distance constraints and achievable savings.

Energy Model. We use the cluster energy model from
section 5.1. We simulated the running cost of the system
using a number of different values for the peak server power
(Ppeak), idle server power (Pidle) and the PUE. This section
discusses normalized costs and Pidle is always expressed as a
percentage of Ppeak. Some energy parameters that we used:
optimistic future (0% idle, 1.1 PUE); cutting-edge/google
(60% idle, 1.3 PUE); state-of-the-art (65% idle, 1.7 PUE);
disabled power management (95% idle, 2.0 PUE).

Client-Server Distance. Given a client’s origin state
and the server’s location (hub), our distance metric calcu-
lates a population-density weighted geographic distance. We
used census data to derive basic population density functions
for each US state. When the traffic contains clients from
outside the US, we ignore them in the distance calculations.

We use this function as a coarse measure for network dis-
tance. The granularity of the Akamai data set does not pro-
vide enough information for us to estimate network latency
between clients and servers, or even to accurately calculate
geographic distances between clients and servers.

6.2 At the Turn of the Year: 24 Days of Traffic
We begin by asking the question: what would have hap-

pened if an Akamai-like system had used price conscious
routing at the end of 2008? How would this have com-
pared in cost and client-server distance to the current rout-
ing methods employed by Akamai?

Energy Elasticity. We find that the answer hinges on
the energy elasticity characteristics of the system. Figure
15 illustrates this. When consumption is completely propor-
tional to load, using price-conscious routing could eliminate
40% of the electricity expenditure of Akamai’s traffic alloca-
tion, without appreciably increasing client-server distances.
As idle server power and PUE rise, we see a dramatic drop in
possible savings: at Google’s published elasticity level (65%
idle, 1.3 PUE), the maximum savings have dropped to 5%.
Inelasticity constrains our ability to route power demand
away from high prices.

Bandwidth Costs. A reduced electric bill may be over-
shadowed by increased bandwidth costs. Figure 15 therefore
also shows the savings when we prevent clusters from hav-
ing higher 95th percentile hit rates than were observed in
the Akamai data. We see that constraining bandwidth in
this way may cause energy savings to drop down to about a
third of their earlier values. However, the good news is that
these savings are reductions in the total operating cost.

By jointly optimizing bandwidth and electricity, it should
be possible to acquire part of the economic value represented
by the difference between savings with and without band-
width constraints.

Distance and Savings. The savings in figure 15 do not
represent a free lunch: the mean client-server distance may
need to increase to leverage market diversity.

The price conscious routing scheme we use has a dis-
tance threshold parameter, allowing us to explore how higher
client-server distances lead to lower electric bills. Figure 16
shows how increasing the distance threshold can be used to
reduce electricity costs. Figure 17 shows how client-server
distances change in response to changes in the threshold.

At a distance threshold of 1100km, the 99th percentile
estimated client-server distances is at most 800km. This
should provide an acceptable level of performance (the dis-
tance between Boston and Alexandria in Virginia is about
650km and network RTTs are around 20ms).

At this threshold, using the future energy model, the sav-
ings is significant, between 10% (obey 95/5 constraints) and
20%. There is an elbow at a threshold of 1500km, causing
both savings and distances to jump (the distance between
Boston and Chicago is about 1400km). After this, increas-
ing the threshold provides diminishing returns.
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Figure 16 shows results for a specific set of server energy
parameters, but other parameters give scaled curves with
the same basic shapes (this follows analytically from our
energy model equations in §5.1; the difference in scale can
be seen in figure 15).

6.3 Synthetic Workload: 39 Months of Prices
The previous section uses a very small subset of the price

data we have. Using a synthetic workload, derived from the
original 24-day one, we ran simulations covering January
2006 through March 2009. Our results show that savings
increase above those for the 24-day period.

Figure 18 shows how electricity cost varied with the dis-
tance threshold (analogous to figure 16). The results are
similar to what we saw for the 24-day case, but maximum
savings are higher. Notably: thresholds above 2000km in
figure 18 do not exhibit sharply diminishing returns like
those seen in 16. In order to normalize prices, we used statis-
tics of how Akamai routed clients to model an Akamai-like
router, and calculated its 39-month cost.

Figure 19 breaks down the savings by cluster, showing the
change in cost for each cluster. The largest savings is shown
at NYC. This is not surprising since the highest peak prices
tend to be in NYC. These savings are not achieved by always
routing requests away from NYC: the likelihood of requests
being routed to NYC depends on the time of day.

We simulated other server distributions (evenly distributed
across all 29 hubs, heterogeneous distributions, etc) and saw
similar decreasing cost/distance curves.
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Dynamic Beats Static. In particular, we see that when
95/5 constraints are ignored, the dynamic cost minimization
solution can be substantially better than a static one. In
figure 18, we see that the dynamic solution could reduce the
electricity cost down to almost 55%, while moving all the
servers to the region with the lowest average price would
only reduce cost down to 65%.

6.4 Reaction Delays
Not reacting immediately to price changes noticeably re-

duces overall savings. In our simulations we were conserva-
tive and assumed that there was a one hour delay between
the market setting new prices and the system propagating
new routes.

Figure 20 shows how increasing the reaction delay impacts
prices. First, note the initial jump, between an immediate
reaction and a next-hour reaction. This implies achievable
savings will exceed what we have calculated for systems that
can update their routes in less than an hour. Further, note
the local minima at the 24 hour mark. This is probably
because market prices can be correlated for a given hour
from one day to the next.

The increase in cost is substantial. With the (65% idle,
1.3 PUE) energy model, the maximum savings is around 5%
(see figure 15). So a subsequent increase in cost of 1% would
eliminate a large chunk of the savings.
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7. ACTUAL ELECTRICITY BILLS
In this paper, we assume that power bills are based on

hourly market prices and on energy consumption. Addi-
tionally, we assume that the decisions of server operators
will not affect market prices.

The strength of this approach is that we can use price
data to quantify how much money would have been saved.
However, in reality, achieving these savings would probably
require a renegotiation of existing utility contracts. Further-
more, rather than passively reacting to spot prices, active
participation opens up additional possibilities.

Existing Contracts. It is safe to say that most current
contractual arrangements would reduce the potential sav-
ings below what our analysis indicates. That said, server
operators should be able to negotiate deals that allow them
to capture at least some of this value.

Wholesale-indexed electric billing plans are becoming in-
creasingly common throughout the US. This allows small
companies that do not participate directly in the wholesale
market to take advantage of our techniques. This billing
structure appeals to electricity providers since risk is trans-
ferred to consumers. For example, in the mid-west RTO
Commonwealth Edison offers a Real-Time Pricing program
[26]. Customers enrolled in it are billed based on hourly
consumption and corresponding wholesale PJM-MISO loca-
tional market prices.

Companies, such as Akamai, renting space in co-location
facilities will almost certainly have to negotiate a new billing
structure to get any advantage from our approach. Most
co-location centers charge by the rack, each rack having a
maximum power rating. In other words, a company like
Akamai pays for provisioned power, and not for actual power
used. We speculate that as energy costs rise relative to other
costs, it will be in the interest of co-location owners to charge
based on consumption and possibly location. There is evi-
dence that bandwidth costs are falling, but energy costs are
not. Even if new kinds of contracts do not arise, server op-
erators may be able to sell their load-flexibility through a
side-channel like demand response, as discussed below, by-
passing inflexible contracts.

Selling Flexibility. Distributed systems with energy
elastic clusters can be more flexible than traditional con-
sumers: operators can quickly and precipitously reduce power
usage at a location (by suspending servers, and routing re-
quests elsewhere). Market mechanisms already exist that
would allow operators to value and sell this flexibility.

Some RTOs allow energy users to bid negawatts (nega-
tive demand, or load reductions) into the day-ahead market
auction. This is believed to moderate prices.

Alternatively, customers could enroll in triggered demand
response programs, agreeing to reduce their power usage in
response to a request by the grid operators. Load reduction
requests are sent out when electricity demand is high enough
to put grid reliability at risk, or rising demand requires the
imminent activation of expensive/unreliable generation as-
sets. The advance notice given by the RTO can range from
days to minutes. Participating customers are compensated
based on their flexibility and load. Demand-response vari-
ants exist in every market we cover in this paper.

Even consumers using as little as 10kW (a few racks) can
participate in such programs. Consumers can also be aggre-
gated into large blocs that reduce load in concert. This is
the approach taken by EnerNOC, a company that collects
many consumers, packages them, and sells their aggregate
ability to make on-demand reductions. A package of hotels
would, for example, reduce laundry volume in sync to ease
power demand on the grid.

The good thing about selling flexibility as a product, is
that this is valued even where wholesale markets do not
exist. It even works if price-differentials don’t exist (e.g.
fixed price contracts or in highly regulated markets).

However, we have ignored the demand side. How do op-
erators construct bids for the day-ahead auctions if they
don’t know next-day client demand for each region? What
happens when operators are told to reduce power consump-
tion at a location, when there is a concentration of active
clients nearby? In systems like Akamai, demand is gener-
ally predictable, but there will be heavy traffic days that are
impossible to predict.

There is anecdotal evidence that data centers have partic-
ipated in demand response programs [3]. However, the ap-
plicability of demand response to single data centers is not
widely accepted. Participating data centers may face addi-
tional downtime or periods of reduced capacity. Conversely,
when we look at large distributed systems, participation in
such programs is attractive. Especially when the barriers to
entry are so low—only a few racks per location are needed
to construct a multi-market demand response system.

8. FUTURE WORK
Some clear avenues for future work exist.

Implementing Joint Optimization. Existing systems
already have frameworks in place that engineer traffic to
optimize for bandwidth costs, performance, and reliability.
Dynamic energy costs represent another input that should
be integrated into such frameworks.

RTO Interaction. Service operators can interact with
RTOs in many ways. This paper has proposed a relatively
passive approach in which operators monitor spot prices and
react to favourable conditions. As we discussed in section
7, there are other market mechanisms in place that service
operators may be able to exploit. The optimal market par-
ticipation strategy is unclear.

Weather Differentials. Data centers expend a lot of
energy running air cooling systems, up to 25% of total en-
ergy. In modern systems, when ambient temperatures are
low enough, external air can be used to radically reduce
the power draw of the chillers. At the same time, weather
temperature differentials are common. This suggests that
significant energy savings can be achieved by dynamically
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routing requests to sites where the heat generated by serv-
ing the request is most inexpensively removed. Unlike price
differentials, which reduce cost but not energy, routing re-
quests to cooler regions may be able to reduce both.

Environmental Cost. Rather than attempting to min-
imize the dollar cost of the energy consumed, a socially re-
sponsible service operator may instead choose to use an envi-
ronmental impact cost function. The environmental impact
of a service is time-varying. An obvious cost function is the
carbon footprint of the energy used. In grids that aggre-
gate electricity from diverse providers, the footprint varies
depending upon what generating assets are active, whether
power plants are operating near optimal capacity and what
mixture of fuels they are currently using. The variation oc-
curs at multiple time scales, e.g., seasonal (is there water to
power hydro systems), weekly (what are the relative prices
of various fossil fuels), and hourly (is the wind blowing or
the tide going out). Additionally, carbon is not the only pol-
lutant. For instance, power plants are the primary station-
ary sources of nitrogen oxide in the US. Due to variations in
weather and atmospheric chemistry, the timing and location
of NOx reductions determine their effectiveness in reducing
ground-level ozone [27].

9. CONCLUSION
The bounds derived in this paper should not be taken too

literally. Our cost and traffic models are based on actual
data, but they do incorporate a number of simplifying as-
sumptions. The most relevant assumptions are probably (1)
that operators can do better by buying electricity on the
open market than through negotiated long-term contracts,
and (2) that the variable energy costs associated with ser-
vicing a request are a significant fraction of the total costs.

Despite these caveats, it seems clear that the nature of ge-
ographical and temporal differences in the price of electricity
offers operators of large distributed systems an opportunity
to reduce the cost of servicing requests. It should be pos-
sible to augment existing optimization frameworks to deal
with electricity prices.

Acknowledgements

We thank our shepherd Jon Crowcroft and the anonymous
reviewers for their insightful comments. We also thank John
Parsons, Ignacio Perez-Arriaga, Hariharan Shankar Rahul,
and Noam Freedman for their help. This work was sup-
ported in part by Nokia, and by the National Science Foun-
dation under grant CNF–0435382.

10. REFERENCES

[1] R. H. Katz, “Tech Titans Building Boom,” IEEE
Spectrum, February 2009.

[2] K. G. Brill, “The Invisible Crisis in the Data Center:
The Economic Meltdown of Moore’s Law,” white
paper, Uptime Institute, 2007.

[3] “Server and Data Center Energy Efficiency,” Final
Report to Congress, U.S. Environmental Protection
Agency, 2007.

[4] Google Inc., “Efficient Computing: Data Centers.”
http://www.google.com/corporate/green/

datacenters/.

[5] X. Fan, W.-D. Weber, and L. A. Barroso, “Power
Provisioning for a Warehouse-sized Computer,” in
ACM International Symposium on Computer
Architecture, 2007.

[6] L. A. Barroso and U. Hölzle, “The Case for Energy
Proportional Computing,” IEEE Computer, 2007.

[7] D. Meisner, B. T. Gold, and T. F. Wenisch,
“PowerNap: Eliminating Server Idle power,” in ACM
ASPLOS, 2009.

[8] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao,
and F. Zhao, “Energy-Aware Server Provisioning and
Load dispatching for Connection-Intensive Internet
Services,” in NSDI, 2008.

[9] VMware DRS: Dynamic Scheduling of System
Resources.

[10] N. Tolia, Z. Wang, M. Marwah, C. Bash,
P. Ranganathan, and X. Zhu, “Delivering Energy
Proportionality with Non Energy-Proportional
Systems – Optimizing the Ensemble,” in HotPower,
2008.

[11] N. Joukov and J. Sipek, “GreenFS: Making Enterprise
Computers Greener by Protecting Them Better,” in
ACM Eurosys, 2008.

[12] Randy Shoup, “Scalability Best Practices: Lessons
from eBay.”

[13] J. Markoff and S. Hansell, “Hiding in Plain Sight,
Google Seeks an Expansion of Power,” the New York
Times, June 2006.

[14] Microsoft Environmental Sustainability group, “Q&A
with Rob Bernard,” Video.

[15] “61 Billion Searches Conducted Worldwide in August,”
Press Release, comScore Inc.

[16] United States Department of Energy, Official
Statistics. http://www.eia.doe.gov.

[17] World Bank, “World Development Indicators
Database.”

[18] Platts, “Day-Ahead Market Prices,” in Megawatt
Daily, McGraw-Hill. 2006-2009.

[19] United States Federal Energy Regulatory Commission,
Market Oversight. http://www.ferc.gov.

[20] Midwest ISO, “Market Concepts Study Guide,” 2005.

[21] P. L. Joskow, “Markets for Power in the United States:
an Interim Assessment,” Aug. 2005.

[22] Severin Borenstein, “The Trouble With Electricity
Markets: Understanding California’s Restructuring
Disaster,” Journal of Economic Perspectives, 2005.

[23] L. Hadsell and H. A. Shawky, “Electricity Price
Volatility and the Marginal Cost of Congestion: An
Empirical Study of Peak Hours on the NYISO
Market,” The Energy Journal.

[24] U. Hölzle, “Powering a Google Search,” Official Google
Blog, Jan. 2009.

[25] J. Chabarek, J. Sommers, P. Barford, C. Estan,
D. Tsiang, and S. Wright, “Power Awareness in
Network Design and Routing,” INFOCOM, 2008.

[26] “Commonwealth Edison.” www.comed.com.

[27] K. C. Martin, P. L. Joskow, and A. D. Ellerman,
“Time and Location Differentiated NOX Control in
Competitive Electricity Markets Using Cap-and-Trade
Mechanisms,” April 2007.

134


