
Buffer Sizing Results for RCP Congestion Control under
Connection Arrivals and Departures

Ashvin Lakshmikantha
ECE and CSL

UIUC
ashvin213@gmail.com

R. Srikant
ECE and CSL

UIUC
rsrikant@illinois.edu

Nandita Dukkipati
Computer Systems Lab

Stanford
nanditad@stanfordalumni.org

Nick McKeown
Computer Systems Lab

Stanford
nickm@stanford.edu

Carolyn Beck
IESE and CSL

UIUC
beck3@illinois.edu

ABSTRACT
Buffer sizing has received a lot of attention recently since it
is becoming increasingly difficult to use large buffers in high-
speed routers. Much of the prior work has concentrated on
analyzing the amount of buffering required in core routers
assuming that TCP carries all the data traffic. In this paper,
we evaluate the amount of buffering required for RCP on a
single congested link, while explicitly modeling flow arrivals
and departures. Our theoretical analysis and simulations in-
dicate that buffer sizes of about 10% of the bandwidth-delay
product are sufficient for RCP to deliver good performance
to end-users.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
protocols - congestion control

General Terms
Modeling of communication Networks, Theory

Keywords
Internet, Rate control

1. INTRODUCTION
We would like to study the performance of RCP (Rate

Control Protocol) congestion control when there are flow
arrivals and departures. RCP has been extensively studied
through simulations, modeling, and experiments; in partic-
ular scalability and stability of RCP have been established
and simulations suggest it is very promising under a broad
range of conditions. In this work we are interested in a prac-
tical aspect of RCP: how much buffering does RCP require
at routers and switches? Specifically, our goal is to study
the impact of buffer size on the average flow completion time
(AFCT) when RCP is used.

The RCP protocol was introduced in [10], which also de-
scribes the algorithm and presents simulations showing short
flow-completion times. The argument for flow completion
time being the appropriate metric for congestion control is
presented in [11]. In [4], control theory is used to show that
RCP is stable independent of the link-capacities, number of
flows and network round-trip times. It is well known that

RCP achieves max-min fairness. Variants of RCP which
achieve other forms of fairness have been proposed and stud-
ied in [19]. In [9, 24], an RCP testbed using real imple-
mentations in software (Linux-based) and hardware (using
Stanford’s NetFPGA) is described.

We briefly review the RCP algorithm here to motivate
why it is interesting to study its buffer-size requirements. In
the basic RCP algorithm a router maintains a single rate,
Z(t), for every link. The router “stamps” Z(t) on every pass-
ing packet (unless it already carries a smaller value). The
receiver sends this value back to the sender so that it knows
the smallest (or bottleneck) rate along the path. In this
way, the sender quickly learns what rate it should be using
(without the need for slow-start). The router updates Z(t)
approximately once per roundtrip time (RTT), and strives
to emulate processor sharing among flows. Intuitively, to
emulate processor sharing, the router should offer the same
rate to every flow, try to fill the outgoing link with traffic,
and keep the queue occupancy close to zero. The RCP rate
update equation (1) is based on this intuition (see Section 2
for details). We note that the RCP algorithm shares some
similarities to those in [15, 18]. Since the goal of RCP is to
quickly learn the available capacity in the bottleneck link,
it is interesting to understand whether this feature is also
helpful in decreasing the buffer-size requirements at routers
in the Internet. We answer this question in the affirmative
in this paper.

The rest of the paper is organized as follows: we first
briefly explain RCP’s mechanisms (Sec. 2), then analytically
characterize the amount of buffering RCP requires (Sec. 3),
go on to validate our results in simulations (Sec. 4), and fi-
nally conclude the paper (Sec. 5). In the interest of space, we
avoid presenting proofs of all the theorems and refer readers
to [20] for details.

2. MAIN PROPERTIES OF RCP
Under RCP every router maintains a rate Z(t) called the

fair-share rate at time t. This fair-share rate is updated by
the router depending on the congestion seen at the router.
The rate information is sent to the end-hosts using the ex-
plicit feedback mechanism described in Section 1. End hosts
transmit at the rate dictated by the router.

Given a single congested link of capacity C accessed by N
long-lived flows, the goal of RCP is to ensure that every flow

ACM SIGCOMM Computer Communication Review 6 Volume 39, Number 1, January 2009

gets a fair-share of the bandwidth. If RCP is stable, then it
follows that the equilibrium fair-share rate Zeq under RCP
should be equal to

Zeq =
C

N
.

If the router knows the number of ongoing flows, N, then
the algorithm converges to Zeq instantaneously. However,
explicitly measuring N requires per-flow information and is
not practical. Therefore RCP estimates N implicitly.

To give an example, consider the same single congested
link being accessed by N long-lived flows. For the moment,
let us assume that all flows have the same delay (RTT)
and the flows are completely synchronized. At time t =
0, let Z(0) = z0. Each packet that arrives at the link is
stamped with the fair share rate z0. One RTT later, all
flows would have received the network fair-share rate and
therefore would adjust their transmission rates to be equal to
z0. Thus the total arrival rate at the router at time t = RTT
would be y(RTT) = Nz0. By measuring the total arrival
rate y at time t = RTT, the router can estimate the number
of flows using bN =

y

z0
,

where bN denotes the router’s estimate of the number of flows
in the system. Using bN , the router updates its fair-share
rate:

Z(RTT) =
CbN .

In the trivial case with N completely synchronized long-lived
flows, the fair-share rate Z(RTT) = C

N
independent of z0.

Even though the router has no prior knowledge of N , it can
implicitly estimate N accurately without requiring per-flow
information and thus converge to the equilibrium fair-share
rate.

The naive scheme that we just described is not robust.
Measurement errors due to unsynchronized users, different
feedback delays, etc. result in large-scale oscillations of the
fair-share rate Z(t), which are not desired. RCP improves
upon this basic algorithm by using the following rate adap-
tive scheme:

Z(t) = Z(t − d)

1 +

d

RTT
(α(C − y(t)) − β q(t)

RTT
)

C

!
, (1)

where RTT is a moving average of the round trip times
measured across all packets, d is the update interval (the
time interval between two successive updates), C is the link-
capacity, y(t) is the measured aggregate input traffic rate
during the last update interval and q(t) is the instantaneous
queue size. The advantage of this scheme is that the param-
eters α and β can be tuned to ensure stability and achieve
desired performance. The parameter α represents the trade-
off between stability and response times. A larger value of
α results in a faster response time at the expense of reduced
stability margins and vice versa. In an earlier study [10], it
has been shown that RCP is stable if α < 1. The parameter
β represents the trade-off between acceptable queueing de-
lay and the fair-share rate during the transient periods. A
large value of β results in small queueing delays at the ex-
pense of reduced fair-share rate during the transient period
and vice versa. The impact of the parameters α, β on the
stability and performance of the system has been studied in

detail in [4]. We refer the reader to [10, 4] for additional
details of the algorithm.

3. BUFFER REQUIREMENTS UNDER RCP
Sizing core-router buffers for TCP has received quite a

lot of attention recently [17, 23, 26, 14, 3, 8]. These works
suggest that core router buffers can be reduced significantly
without compromising on link utilization. These guidelines
make use of the fact that a large number of flows access
the core router and therefore statistical multiplexing gains
substantially reduce the required buffered size.

In the same spirit, it is possible to characterize the buffer
size required by RCP enabled routers. The statistical multi-
plexing benefits that can be reaped in a network with large
number of users apply for RCP flows as well. In particular,
simulations and intuitive reasoning indicate that fixed buffer
sizes (independent of the delay-bandwidth product) can be
employed in the core routers of a RCP enabled network. In-
terested readers can refer to the longer version of this paper
[20] for more details on this model.

In this work, we consider scenarios where statistical mul-
tiplexing is not a key factor in determining buffer sizing
requirements. Instead, we focus on the possible reduction in
buffer size due to the fact that RCP provides explicit rate
information to the sources. We consider a single congested
link used by multiple RCP flows competing for bandwidth.
We impose no access speed limitations on the flows. In other
words, we allow for the possibility of a single flow being able
to saturate the link. We also explicitly model flow arrivals
and departures. This model is applicable to the edge routers
in the Internet and in data center networks where there are
very few flows for statistical multiplexing to be effective.
The scenario is similar in spirit to [21] but the models we
use here are quite different and specific to RCP.

We derive buffer sizing results for two extreme cases: (a)
the mean flow size is large compared to the bandwidth de-
lay product and (b) the mean flow size is small compared
to the bandwidth delay product. If the mean flow-size is
1
µ
, the capacity of the router is C and the feedback delay

is RTT, the two scenarios mentioned above correspond to
µCRTT ≪ 1 and µCRTT ≫ 1 respectively. For analyt-
ical convenience, we assume that all flows have the same
RTT. However, our simulations later on are carried out for
scenarios where different flows have different RTTs.

The first case is a natural extension of the static scenario
in which a fixed number of flows N stay in the system for
an infinitely long-time. In this setting, the number of flows
in the network changes very slowly when compared to the
convergence times of RCP. Therefore, RCP can track the
number of flows in the network quite accurately, thereby
making efficient use of link capacity. From the point of view
of a congestion control protocol designer, this is the regime
of interest.

The second case represents a network that is dominated
only by short-flows. The motivation for studying short-flows
is the presence of a large number of short flows in the In-
ternet today. Since short-flows cannot be controlled, one
could argue that large buffers must be employed to elim-
inate large-scale packet loss. In this work, we show that
even when no congestion control is imposed on the short-
flows, small buffers do not degrade the performance of RCP
significantly.

The Internet consists of a large number of short-flows that

ACM SIGCOMM Computer Communication Review 7 Volume 39, Number 1, January 2009

contribute to a small fraction of the traffic volume, and a
small number of long-flows that contribute to a large frac-
tion of the traffic volume. Our analysis considers the two
extreme cases (short-flows and long-flows) while the mixture
is studied in simulations.

The rest of this section is organized as follows. In Section
3.1, we derive an expression for AFCT of flows as a function
of packet loss probability. We then consider the impact of
buffer size on packet loss probability by studying two ex-
treme cases in Sections 3.2 and 3.3, respectively: one where
the mean file size is large compared to the bandwidth delay
product and the other where the mean file size is small com-
pared to the bandwidth delay products. The effect on buffer
size on AFCT can be evaluated using the results derived in
these sections.

3.1 The effect of loss probability on AFCT
For protocols like TCP, packet losses directly affect through-

put since the window size is decreased by half whenever
losses are seen. Therefore, it is rather obvious that the
packet-loss probability should be kept as small as possi-
ble. With RCP, packet-losses and the rate are decoupled.
So, losses do not affect the throughput directly. However,
packet losses can affect the AFCT.

This can be best explained using an example. Consider
a flow which has seven packets to transmit. In a network
with no loss, RCP would transmit all the seven packets one
after another while adjusting its transmission rate to match
the rate dictated by the latest ack packet. Now consider
a network in which packets can be dropped. At the end
of the first transmission round, not all packets are received
successfully. Packets numbered 4 and 6 are dropped by the
network. However the RCP source cannot know about the
dropped packets instantaneously. The RCP source comes
to know of the lost packets in the following fashion. After
transmitting the seventh packet, the RCP source waits for
some time in order to receive ack packets from the receiver
(in this example, by the time the RCP source transmits the
seventh packet, the only packets that are unacknowledged
are packets numbered 4, 6 and 7). Since packet numbered
4 and 6 were dropped from the network, the source will not
receive ack packets for these data packets. Eventually (i.e.,
2×RTT later), the RCP source assumes that these packets
are lost and decides to retransmit them. Let us assume that
packet numbered 6 is again dropped by the network. This
time the RCP source will receive an ack packet for packet
numbered 4, but not for packet numbered 6. The RCP source
will again wait for 2 × RTT and then decide to retransmit
packet numbered 6. The flow is considered complete once
the RCP source receives an ack packet for packet numbered
6. In this example, the RCP source had to transmit packets
in three “rounds” to ensure that all the packets are received
by the receiver.

Generalizing the above examples, an RCP source retrans-
mits data using the following retransmission mechanism. In
any “round”, the RCP source transmits all of its unacknowl-
edged packets, while adjusting its rate according to the net-
work conditions (as indicated by the latest ack packet). Af-
ter transmitting the last unacknowledged packet, the RCP
source waits for 2 × RTT in order to receive the ack pack-
ets. If some packets are lost, these packets would remain
unacknowledged. If the RCP source does not receive an ack
packet for a particular data packet within the waiting pe-

riod, it assumes that the data packet was dropped by the
network. The RCP source will retransmit all the lost packets
in the subsequent “round.” This process is continued until
all the packets have been acknowledged. Thus, increased
packet losses increase AFCT for the following two reasons:
(a) Lost packets must be transmitted again which means
that the same packet may be transmitted multiple times.
(b) Packet loss also inserts a waiting period of 2 × RTT
between successive transmission rounds.

Note that the above retransmission mechanism is more
naive than retransmission protocols implemented in exist-
ing versions of TCP. For example, the sender does not have
to wait for a full round before retransmitting a lost packet.
Thus, more sophisticated retransmission protocols will im-
prove the file completion time by reducing the 2×RTT wait-
ing time between rounds. In other words, from the point of
view of estimating the AFCT, our retransmission assump-
tion is worst-case, i.e., the performance of RCP can only be
better than our analysis suggests if a better retransmission
scheme is used. Our main result of this section, captures the
trade-off between the packet-loss probability and the AFCT.

Theorem 1. Consider a single bottleneck link of capac-
ity C being accessed by many competing flows. Suppose that
packet losses occur with probability p, and the packet-loss
events are assumed to occur independently across packets.
Then, for a flow which has K packets to transmit, the aver-
age flow completion time is upper-bounded by,

T̄ p
K = T̄ 0

K
(1−p)

+ 2RTT
KX

k=1

(−1)k

�
K
k

�
pk

1 − pk
, (2)

where T̄ p
K denotes the AFCT of a flow with K packets when

the packet-loss probability at the router is p and T̄ 0
K denotes

the AFCT of a flow with K packets when the system has
zero losses (i.e., RCP with large buffers).

Proof. We only provide a sketch of the proof here. For the
complete proof, the interested reader is referred to [20]. The
increase in the AFCT is due to two reasons:

(i) In a lossy network, the same packet could be trans-
mitted multiple times, so that the receiver can receive it
successfully. If the packet-loss probability at the link is p,
then to ensure that K packets are received successfully, the
source has to transmit, on average, K

(1−p)
packets. The time

taken for an end user to transmit K
(1−p)

packets is T̄ 0
K

1−p

.

This gives the first part of (2).
(ii) As mentioned earlier, RCP transmits packets in “rounds.”

At the end of each round, RCP waits for 2 × RTT before
retransmitting the unacknowledged packets. To character-
ize the increase in AFCT due to these waiting periods, we
have to compute the average number of “rounds” taken by
RCP to transmit K packets. Let Ri be the random variable
that represents the round in which packet i was success-
fully received by the receiver. The flow is complete if all the
packets are successfully received at the receiver. Therefore,
the average time spent waiting for the feedback to arrive is
2 × RTTE[maxi∈{1,K}{Ri}]. It can be shown that this is
equal to the second term in (2).

Remark 1. We consider the following example of a sin-
gle link of capacity C = 100 Mbps with flows having RTT =

ACM SIGCOMM Computer Communication Review 8 Volume 39, Number 1, January 2009

100 ms. Let us suppose that each packet is 1 KB long and
therefore C = 12500 packets/sec. Flows arrive according
to a Poisson process of rate λ and the file-sizes are expo-
nentially distributed with mean 1

µ
. Further let us suppose

that λ and µ are chosen such that the load on the system
ρ = λ

µ
= 80 Mbps.

To calculate T̄ p
K , we need to know T̄ 0

K , i.e., the AFCT of
flows under RCP when the network has zero losses. Ac-
cording to earlier studies [10, 12], the AFCT of flows under
RCP can be well approximated by the AFCT of flows under
processor-sharing (PS) discipline with an extra overhead of
2 × RTT. This overhead is the time required to setup and
tear down the connection1. In other words, the AFCT of a
K packet flow under RCP in a zero-loss network is approx-
imately

T̄ 0
K ≈ 2 × RTT +

K

C(1 − ρ

C
)
.

Using this expression for T̄ 0
K , we plot the AFCT of flows as

a function of the packet-loss probability p for various values
of the flow size K. To compare across different flow sizes
K, we normalize T̄ p

K with the AFCT of the same flow under

zero loss (i.e., we plot
T̄

p

K

T̄0
K

). The results are provided in Fig.

1.
Suppose we operate the network at a packet-loss probability

of p = 0.1. At this loss probability, the short-flows (K = 10)
and long-flows (K = 10, 000) do not suffer much degrada-
tion (less than 20%) in their AFCT compared to a network
with zero packet loss. On the other hand, the AFCT in-
creases more significantly for intermediate-size flows. For
example, for K = 100, the AFCT increases by 65%. Under
a Pareto distribution which is commonly proposed for Inter-
net file sizes, conditioned on the fact that a file is not short,
the mean file size is typically very large. Thus, the above
increase in AFCT for medium file sizes should not signif-
icantly affect the overall AFCT. This observation is borne
out by simulations presented in a later section. In sum-
mary, we expect that changes to the buffer size, which vary
the loss probability in the range between 0 and 10%, will not
affect the AFCT significantly. This intuition is verified later
through simulations.

3.2 Overflow probability in large flow-size net-
works

In the previous subsection, we have derived an expression
for AFCT as a function of loss probability. In this subsec-
tion and the next, we relate the loss probability to the buffer
size. Computing the loss probability in a queueing system
is quite hard. Instead, we use overflow probability as an ap-
proximation to the loss probability, i.e., we assume that the
buffer size is infinite and estimate the overflow probability
Prob{Q > B}, where B is the buffer size. Approximating
the loss probability using overflow probability is quite stan-
dard in the queueing theory literature and has been used
effectively to size buffers using large-deviations techniques
[16].

When the mean flow-sizes are very large (µCRTT ≪ 1),

1RCP uses the standard three-way handshake used by TCP
to initiate a session. Similarly, at the end of a session, the
source transmits a FIN message to the receiver to tear down
the connection. The time required to transmit these mes-
sages is 2 × RTT.

p

Normalized AFCT

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
1.0

1.5

2.0

2.5

K= 10
K= 100
K=1000
K=10000

Figure 1: Normalized AFCT as a function of the
packet loss probability p. Setup : C = 100 Mbps,
RTT = 100 ms, ρ = 80 Mbps

the network conditions do not change rapidly. Congestion
control protocols operate on time-scales much faster than
the time-scales of arrival and departures. To give a clear
picture of the possible situations where these results are ap-
plicable, consider a link in a metro-Ethernet network, pro-
viding services to data storage traffic. Let the capacity of
the link be 100 Mbps. Since the service is typically local,
the RTT will be quite small (say 10 ms). The data storage
traffic consists of large file transfers, and in this case suppose
that, on average, the files are about 10 MB long. For this
example, µCRTT = 0.0125 ≪ 1.

Now, to support a load of 80%, the arrival rate λ =
1flow/sec. Therefore, on average, it takes about 50 RTTs
for the system to change its state2 (either an arrival or a de-
pature). In an earlier work, the convergence times of RCP
has been studied for the case of N long-lived flows [4]. These
results indicate that typically RCP takes about 5 to 10 RTTs
to reach the equilibrium fair share (depending on the param-
eters α and β in (1)). In other words, when the system is
varying very slowly compared to the time scale of the con-
gestion control protocol, for most of the duration, the fair
share rate under RCP is equal to the rate under processor
sharing (see Fig. 2). Therefore, the statistics of the number
of flows under RCP would be close to the statistics of the
number of flows under processor sharing (see Fig. 3).

Assumption 1. If µCRTT ≪ 1, then the statistics of
the number of flows under RCP is the same as the statistics
of number of flows under processor sharing (PS). In other
words,

PRCP {N = i} = PPS{N = i} =
� ρ

C

�i �
1 −

ρ

C

�
. (3)

We now state our main result of this section.

2An arrival would occur on average once in 100 RTTs. Sim-
ilarly a depature is seen once in 100 RTTs as the system is
stable. Therefore, the system changes its state on average,
once in 50 RTTs.

ACM SIGCOMM Computer Communication Review 9 Volume 39, Number 1, January 2009

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 2000 2020 2040 2060 2080 2100

flo
w

-r
at

e

Time [secs]

PS Rate = C/N(t)
RCP Rate, R(t)

Figure 2: Time variation of the RCP rate under
flow arrivals and departures. Simulation parame-
ters: C = 100 Mbps, 1

µ
= 10 MB, RTT = 10 ms,

ρ = 0.8

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0 5 10 15 20 25 30

P
ro

ba
bi

lit
y

Number of flows in system

Prob(N = i) in RCP
P(N = i) in PS

Figure 3: Distribution of the number of flows under
RCP and under PS. Simulation parameters: C = 100
Mbps, 1

µ
= 10 MB, RTT = 10 ms, ρ = 0.8

Theorem 2. Consider a single-link accessed by many flows.
The flows arrive into the network according to a Poisson pro-
cess with rate λ. The file-sizes are assumed to be i.i.d with
mean flow size 1

µ
. Let N denote the number of active flows in

the system. Furthermore, suppose that the file-sizes are large
enough such that ν = µCRTT ≪ 1. Let κ = B

C×RTT
< 1.

Then, the probability that the queue Q exceeds a threshold B
is given by

P{Q > B} = ν
� ρ

C

�2

ERCP

"�
1

αN
− κ

�+
�����N > 0

#
+ o(ν),

where ρ = λ
µ

and ERCP [·] denotes the expectation under the
stationary distribution of N under RCP. Here we have used
the convention that

(X)+ =

�
X, if X > 0,
0, otherwise.

Now suppose that Assumption 1 holds. Then the above ex-
pression can be simplified to obtain,

P{Q > B} = ν
� ρ

C

�2
�

1

α

C − ρ

ρ
log
�
1 −

ρ

C

��
−ν
� ρ

C

�2
�

κ

�
1 −

� ρ

C

�N∗
��

,

where N∗ =
1

κα
.

Proof. We provide a sketch of the proof here. The reader
is referred to [20] for more details. Since ν ≪ 1, flows arrive
and depart on time-scales that are much slower than the
time required for congestion control protocols to converge.
Furthermore, buffers are required only to store packets when
there are new arrivals into the system (a departure leaves
spare capacity in the system and no packets are dropped

when flows depart from the system). Almost zero buffering
is required when the system is in steady state.

Since arrivals occur rarely, the most likely cause of buffer
overflow is the arrival of a single new flow into the system.
The packet losses that occur due to the arrival of many
flows within a short duration are so small that they can be
neglected in our calculation.

To calculate the packet loss probability, we need to calcu-
late the number of extra packets that are generated during a
transition event. Suppose that there are N = n flows in the
system at time t = 0, and at time t = δ a new flow arrives
into the system. Assuming that the n flows were in steady-
state, the packet arrival rate at the core router at time t = δ

would be (n+1)
n

C. Since the link is partially oversubscribed,
the RCP algorithm would adjust the fair-share rate to re-
duce congestion. During this transition the fair-share rate
maintained at the router changes from Z = C

n
to Z = C

n+1
.

The evolution of the fair-share rate Z(t) under RCP can be
approximated by the following difference equation.

Z((k + 1)RTT) = Z(kRTT) + α(C − (n + 1)Z(kRTT)).

This difference equation can be solved using standard z-
transform methods. Assuming Z(0) = C

n
, the evolution of

Z(t) can be expressed as,

Z((k + 1)RTT) =
C

n + 1
+ (1 − α)k C

n(n + 1)
.

Assuming that Q(0) = 0, we calculate the number of dropped
packets D:

D =

∞X
k=0

((n + 1)Z(kRTT) − C) RTT − κCRTT

= CRTT

�
1

nα
− κ

�+

Therefore, the average number of dropped packets is

ERCP [D] = CRTT
ρ

C
ERCP

"�
1

Nα
− κ

�+
�����N > 0

#
The average inter-arrival time is 1

λ
. The average number of

packets transmitted during this time would be

T = C
1

λ

Therefore the fraction of lost packets is

Prob{Q > B} =
ERCP [D]

T

= ν
� ρ

C

�2

ERCP

"�
1

αN
− κ

�+
�����N > 0

#
The second result of Theorem 2 is obtained by a straight-
forward algebraic simplification after substituting for PRCP

from (3).

We now consider the same example considered earlier in
this section (C = 100 Mbps, 1

µ
= 10 MB, RTT = 80 ms and

α = 0.2). The loss probability is plotted as a function of the
load in Fig. 4. As demonstrated by the figure, even when the
buffer size is only about 0.02 × CRTT, the loss probability
does not suffer significantly. The maximum packet loss seen
is about 2.5%.

ACM SIGCOMM Computer Communication Review 10 Volume 39, Number 1, January 2009

 B=0.02*C*RTT

Load

Packet Loss Probability

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 4: Loss probability as a function of the of-
fered load: Buffer Size = 0.02 × CRTT

Remark 2. It is interesting to note that as ρ → C, the
loss probability tends to zero. This may seem counter-intuitive
at first (with TCP, losses dictate the throughput and since
throughput decreases with the increase in the load, the loss
probability should increase as the load increases), but we have
found that simulations exhibit the same behavior. The rea-
son is that buffering is used only to store packets from newly
arrived flows. For existing flows, no buffering is required
since their total arrival rate is equal to capacity. As the load
increases, the average per-flow rate of the newly arrived flow
decreases and therefore, chances of overflowing the buffer de-
creases. This is captured in Fig. 4.

3.3 Overflow probability in small flow-size net-
works

Whenever congestion control works well (i.e., flows with
large mean size), we have seen that RCP requires very small
amounts of buffering at the core router. However, as men-
tioned earlier, Internet traffic consists of mostly short-flows
which do not last long enough to react to congestion. In
this section, we complement the results in the previous sub-
section by studying another extreme case where the mean
flow-size is so small that most flows do not react to conges-
tion information. The purpose of this exercise is to show
that, even in this case, small buffers are sufficient. As in
Section 3.2, we assume that the buffer sizes are infinite and
our analysis provides an estimate of the probability that the
queue size exceeds a threshold B.

Before we start studying the buffer size requirements, it is
worthwhile to consider a simple example to understand the
assumptions that we make to derive the overflow probability.
A key observation that facilitates the analysis is that, if the
mean flow size is small, then the network conditions change
significantly within a single update interval. Consider a sin-
gle congested router of capacity 10 Gbps and RTT 80 ms.
Further suppose that the users primarily access the network
for web page downloads and therefore, the mean flow size is
fairly small. For the purposes of this example, let us assume
that the mean flow size on this link is 1

µ
= 50 KB. Further

let us suppose that the update interval d = 10 ms. Then,
if the offered load is 80%, the flow arrival rate should be
about 20, 000 flows/sec. This means that on average about
1, 600 flows would arrive and depart within a single round
trip time. Thus, even if the network were to estimate the

fair-share rate accurately, by the time this feedback infor-
mation reaches the end-host, the network conditions would
have changed dramatically, making the information stale.
In other words, the rate information conveyed to the source
one round trip time earlier would carry little information
about the present level of network congestion. Therefore,
in carrying out our analysis, we make the following assump-
tion.

Assumption 2. The rate z at which a flow is transmit-
ting data, is independent of the number of flows in the net-
work N.

Recall from Section 2 that RCP updates the rate information
once every d seconds. Thus, every packet arriving to the
router within the same update period will carry the same
rate information. If all the flows have the same RTT, then
this information would reach the end hosts at the same time.
Thus, all the end-hosts will transmit at the same rate. This
leads to our second assumption.

Assumption 3. All the end users are assumed to trans-
mit at the same rate z within a single update period.

Suppose that flow arrivals occur according to a Poisson pro-
cess with rate λ and the file-sizes are exponentially dis-
tributed. Then, the flow departure process can be described
by a Poisson process with rate µN(t)z, where N(t) denotes
the number of active flows at time t. Thus N(t) is a Markov
chain and the statistics of N(t) within a single update pe-
riod are the same as that of a M/M/∞ queue with mean
arrival rate λ and mean service time 1/µz.

Our main objective here is to find out how many packets
arrive within an update period or in other words, to deter-
mine in the distribution of the packet arrival process within
a single update period. If Ak is a random variable that de-
notes the total number of packet arrivals within the update
period k, then

Ak =

Z d

0

N(t)zdt.

Since z is a constant, the distribution of Ak is determined by

the distribution of
R d

0
N(t)dt. We will approximate

R d

0
N(t)dt

by a Gaussian distribution and assume that Ak are inde-
pendent. Admittedly, such assumptions are difficult to jus-
tify. The Gaussian approximation can be partly justified by
heavy-traffic limit theorems for infinite server queues [25].
On the other hand, whether a time-interval of size d is suffi-
cient for the time scaling used in heavy-traffic limit theorems
to apply is difficult to judge. However, simulations indicate
that our model provides the right qualitative and quanti-
tative insight into the relationship between buffer size, loss
probability and AFCT.

From the covariance function of the M/M/∞ queue (see,
for example, [13]), it is straightforward to compute the mean
and variance of Ak as

E(Ak) = ρd, and V ar(Ak) =
2ρd

µ

�
1 −

1 − e−µzd

µzd

�
.

Since we are considering the regime where the file size is
small compared to the delay-bandwidth product for each
user, i.e., 1/µ << zd, we make the following assumption
regarding Ak.

ACM SIGCOMM Computer Communication Review 11 Volume 39, Number 1, January 2009

C=10Gbps, SF mean = 50 kB, Buffer = 2.5% BDP

Load

Loss Prob

0.74 0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94
−8

10

−6
10

−4
10

−2
10

0
10

Figure 5: Packet loss probability as a function of the
offered load: C = 10 Gbps, RTT = 80 ms, 1

µ
= 50 KB,

B = 2500 KB (0.025 × C × RTT)

Assumption 4. The number of packet arrivals in a mea-
surement interval is assumed to be a Gaussian random vari-
able with mean ρd and variance 2ρd

µ
. We also assume that

the random variables representing the number of arrivals in
each measurement interval are independent.

Now we are ready to state the main result of this section.

Theorem 3. Consider a single-link of capacity C. The
flows arrive into the network according to a Poisson process
of rate λ. The file-sizes are exponentially distributed with
mean 1

µ
. We denote the update period be denoted by d. Sup-

pose that Assumptions 3-4 hold. Then, the buffer size B
required to ensure that the overflow probability is less than
some desired threshold pdes is given by

B >
ρ

µ(C − ρ)
log

�
1

pdes

�
.

Proof. From large deviations theory [7], one can achieve an
overflow probability pdes with a buffer size B if

Λ(γ)

γ
< Cd,

where

γ = −
1

B
log(pdes), and Λ(γ) = log E[eγA1].

Since Ai is known to be a Gaussian random variable with
mean ρd and variance 2ρd

µ
, the above equation can be sim-

plified to obtain the desired result.

Consider the same example considered earlier in this sec-
tion (C = 10 Gbps, 1

µ
= 50 KB and RTT = 80 ms). Let the

buffer size be equal to 10 Gbps ×2 ms. For this buffer size,
the loss probability is plotted as a function of the offered
load in Fig. 5. As the figure demonstrates, even with only
2 ms of buffering (it is equivalent to 0.025×C ×RTT), the
packet loss probability is extremely small. Even when the
offered load is 90% of the capacity, the figure indicates that
the loss probability is around 0.01.

4. SIMULATION RESULTS
Our simulations use ns− 2.29 [1] and we have augmented

the RCP end-host algorithm described in [10] (code available
at RCP web page [2]) with a simple retransmission scheme,
which works as follows: the receiver informs the sender of the
cumulative number of packets it has received so far, through
the acknowledgment packets. It does not send the source
any information regarding the sequence numbers of the lost
packets. Thus, the source assumes that the flow is complete
when the number of packets received by the receiver is equal
to the flow size. This abstraction simplifies the design of
the retransmission mechanism significantly and is consistent
with the analytical model used earlier. At the same time,
the approach is detailed enough to study the effects of small
buffers on flow completion times.

We consider a single bottleneck link accessed by many
flows. The mean packet size is set to be 1000 bytes. Flows
arrive into the network according to a Poisson process of
rate λ and transfers a random amount of data, with mean
1
µ
. The load on the system ρ = λ

µ
. We change the load on

the system, by changing λ. The RCP parameters are chosen
as (α, β) = (0.4, 0.5) in all our simulations.

We perform three sets of simulations to understand the
impact of buffer size on the AFCT of RCP-controlled flows:
the first set of simulations considers the case of long flows,
the second set of simulations considers short flows and the
third set of simulations considers a mixture of short and
long flows. To simulate a mixture of file sizes with a large
variance as in the Internet, we use a hyper-exponential file-
size distribution, i.e., with a certain probability q the file size
is exponential with a large mean 1/µl, and with probability
1 − q the file size is exponential with a small mean 1/µs.
To study the accuracy of the analytical results, we use an
exponential file size of 1/µl to simulate the case of long flows
only, and an exponential file size of 1/µs to simulate the case
of short flows only.

Due to space limitations, we only present a representative
simulation example for each of the three cases. More ex-
tensive simulations can be found in a technical report [20].
We note that the purpose of the simulations presented here
is to show that the performance of RCP does not degrade
significantly when the buffer size is reduced from the full

bandwidth-delay product (BDP) to 1/20th of the BDP. In
addition, we note that RCP performs significantly better
than TCP for this range of buffer sizes. This comparison
between RCP and TCP is not shown here but can be ob-
served from the simulations in [20].

In our first set of simulations, we plot the AFCT as a func-
tion of the load for three different buffer sizes: BDP, 10%
of the BDP and 5% of the BDP. As the Figure 6 shows,
the AFCT is not significantly affected by the buffer size. In
Figures 7-8, we compare the AFCT obtained from simula-
tions with the theoretical expressions derived in the earlier
sections. As can be seen from the figures, there is strong
agreement between simulations and the theory.

Next, we present similar simulation results for the case
of short flows in Figures 9-11. Again, the AFCT is not
significantly affected by the buffer size, and the theoretical
results are in agreement with the simulation results.

Finally, we present simulation results for a mixture of
long and short flows. Here, since there are no theoretical
results in this case, we only compare the AFCT obtained
through simulations for three different cases of buffer sizes.

ACM SIGCOMM Computer Communication Review 12 Volume 39, Number 1, January 2009

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
F

C
T

 (
S

ec
)

Load

 C=1Gbps, mean LF = 10MB, RTT=8ms

Buffer Size= 5% BDP
Buffer Size= 10% BDP

Buffer Size= 100% BDP

Figure 6: AFCT as a function of load for long flows

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
F

C
T

 (
S

ec
)

Load

 C=1Gbps, mean LF = 10MB, RTT=8ms, Buffer Size = 10% BDP

Simulations
Theory

Figure 7: Comparison of the theoretical and simu-
lation results for the AFCT of long flows when the
buffer size is equal to 10% of the BDP

The results are presented in Figures 12-14. The figures in-
dicates that the difference between the AFCT with a buffer
size equal to the full bandwidth-delay product and a buffer
size equal to 10% of the bandwidth-delay product is less
than 15%. When the buffer size is reduced to 5% of the
bandwidth-delay product, the AFCT increases by approxi-
mately 25%. Based on these and other extensive simulation
results, we recommend that the buffer size can be reduced
to 10% of the bandwidth-delay product without significantly
affecting performance.

5. CONCLUSIONS
In this paper, we have developed a simple model for RCP

and studied the amount of buffering needed on RCP-enabled
routers. Specifically, we consider scenarios where the num-
ber of flows is not sufficiently large to take advantage of sta-
tistical multiplexing to reduce buffer sizes. Rather, we focus
on the benefits of explicit rate feedback in reducing buffer
size requirements. We first model the impact of loss proba-
bility on AFCT. Then, we approximate loss probability by
overflow probability and model the impact of buffer size on
overflow probability in two separate cases: one where flow
sizes are large and one where flow sizes are small. Numeri-

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
F

C
T

 (
S

ec
)

Load

C=1Gbps, mean LF = 10MB, RTT=8ms, Buffer Size = 100% BDP

Simulations
Theory

Figure 8: Comparison of the theoretical and simu-
lation results for the AFCT of long flows when the
buffer size is equal to the BDP

 0.14

 0.16

 0.18

 0.2

 0.22

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

A
F

C
T

 (
S

ec
)

Load

 C=1Gbps, mean SF = 25 kB, RTT=80ms

Buffer Size= 5% BDP
Buffer Size= 10% BDP

Buffer Size= 100% BDP

Figure 9: AFCT as a function of load for short flows

cal studies using our models allow us to conclude that RCP
delivers good performance even with buffer sizes as small
as 10% of the bandwidth delay product. We also validate
our results using simulations where, in addition to the sepa-
rate large and small file-size cases, we also consider networks
with a mixture of file-sizes.

Prior work suggests that there are four main features of
RCP that make it an appealing and practical congestion
control algorithm: (i) RCP is inherently max-min fair. (ii)
RCP’s flow-completion times are often one to two orders of
magnitude better than in TCP SACK and XCP [6], and
close to what flows would have achieved if they were ideally
processor shared. (iii) There is no per-flow state or per-flow
queuing. (iv) The per-packet computations at RCP router
are simple.

In addition, we have now established that small buffer-
sizes are sufficient which makes RCP an attractive protocol
for deployment in high-speed networks. As noted in Sec-
tion 1, RCP can also be modified to achieves other forms
of fairness such as proportional fairness which may have
other desirable properties as well (see [5, 22] and references
within).

ACM SIGCOMM Computer Communication Review 13 Volume 39, Number 1, January 2009

 0.14

 0.16

 0.18

 0.2

 0.22

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

A
F

C
T

 (
S

ec
)

Load

 C=1Gbps, mean SF = 25 kB, RTT=80ms, Buffer Size = 10% BDP

Simulations
Theory

Figure 10: Comparison of the theoretical and simu-
lation results for the AFCT of short flows when the
buffer size is equal to 10% of the BDP

 0.14

 0.16

 0.18

 0.2

 0.22

 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

A
F

C
T

 (
S

ec
)

Load

C=1Gbps, mean SF = 25 kB, RTT=80ms, Buffer Size = 100% BDP

Simulations
Theory

Figure 11: Comparison of the theoretical and simu-
lation results for the AFCT of short flows when the
buffer size is equal to the BDP

Acknowledgment
Research supported in part by NSF grant CNS 07-21286 and
the NSF 100x100 Clean Slate Program.

6. REFERENCES
[1] The network simulator: ns-2. Available at

http://www.isi.edu/nsnam/ns.

[2] Rcp web page, 2006. http://yuba.stanford.edu/rcp.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. In ACM/SIGCOMM, 2004.

[4] H. Balakrishnan, N. Dukkipati, N. McKeown, and
C. Tomlin. Stability analysis of explicit congestion
control protocols. IEEE Communication Letters,
11(10), October 2007.

[5] T. Bonald, L. Massoulie, A. Proutiere, and
J. Virtamo. A queueing analysis of max-min fairness,
proportional fairness and balanced fairness. Queueing
Systems, 2006.

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
ho

rt
-F

lo
w

 A
F

C
T

 (
se

c)

Load

C=1Gbps,RTT=80ms, mean SF=25kB, mean LF=10MB, Ratio: 95:5

Buffer SizSFSe= 5% BDP
Buffer Size= 10% BDP

Buffer Size= BDP

Figure 12: Comparison of the AFCT for short flows
under various buffer sizes, when the network traffic
consists of a hyper-exponential mixture of short and
long flows

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Lo
ng

 F
lo

w
 A

F
C

T
 (

se
c)

Load

C=1Gbps,RTT=80ms, mean SF=25kB, mean LF=10MB, Ratio: 95:5

Buffer SizSFSe= 5% BDP
Buffer Size= 10% BDP

Buffer Size= BDP

Figure 13: Comparison of AFCT for long flows un-
der various buffer sizes when the network traffic con-
sists of a hyper-exponential mixture of short and
long flows

[6] M. Handley D. Katabi and C. Rohrs. Internet
congestion control for future high bandwidth-delay
product environments. In Proceedings of ACM
SIGCOMM, 2002.

[7] G. de Veciana, G. Kesidis, and J. Walrand. Resource
management in wide-area ATM networks using
effective bandwidths. IEEE Journal on Selected Areas
in Communications, 13:1081–1090, 1995.

[8] A. Dhamdhere and C. Dovrolis. Open issues in router
buffer sizing. ACM/SIGCOMM Computer
Communication Review, pages 87–92, January 2006.

[9] N. Dukkipati, G. Gibb, N. McKeown, and J. Zhu.
Building a RCP (rate control protocol) test network.
In Proceedings of Hot Interconnects, August 2007.

[10] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and
N. McKeown. Processor sharing flows in the Internet.
In Thirteenth International Workshop on Quality of
Service (IWQoS), 2005.

ACM SIGCOMM Computer Communication Review 14 Volume 39, Number 1, January 2009

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
F

C
T

 (
se

c)

Load

C=1Gbps,RTT=80ms, mean SF=25kB, mean LF=10MB, Ratio: 95:5

Buffer SizSFSe= 5% BDP
Buffer Size= 10% BDP

Buffer Size= BDP

Figure 14: Comparison of overall AFCT under
buffer sizes when the network traffic consists of a
hyper-exponential mixture of short and long flows

[11] N. Dukkipati and N. McKeown. Why flow-completion
time is the right metric for congestion control. In
ACM SIGCOMM Computer Communication Review,
January 2006.

[12] N. Dukkipati, N. McKeown, and A. Fraser. RCP-AC:
Congestion control to make flows complete quickly in
any environment. In Proceedings of the IEEE
INFOCOM, April 2006.

[13] S. G. Eick, W. A. Massey, and W. Whitt. The physics
of the Mt/G/∞ queue. Operations Research,
41:731–742, 1993.

[14] M. Enachescu, Y. Ganjali, A. Goel, T. Roughgarden,
and N. McKeown. Part III: Routers with very small
buffers. ACM/SIGCOMM Computer Communication
Review, 35(3):7, July 2005.

[15] C. Fulton, S. Q. Li, and C. S. Lim. An ABR feedback
control scheme with tracking. In Proceedings of IEEE
INFOCOM, pages 806–815, 1997.

[16] A. J. Ganesh, D. Wischik, and N. O’Connell. Big
Queues, volume 1838 of Lecture notes in Mathematics.
Springer-Berlin, 2004.

[17] M. Handley and D. Wischik. Congestion,
synchronization and buffer size in backbone routers,
2006. preprint.

[18] S. Kalyanaraman, R. Jain, S. Fahmy, R. Goyal, and
B. Vandalore. The ERICA switch algorithm for ABR
traffic management in ATM networks, 1997.
http://www.cis.ohio-state.edu/ jain/papers.

[19] F. Kelly, G. Raina, and T. Voice. Stability and
fairness of explicit congestion control with small
buffers. SIGCOMM Computer Communication
Review, pages 51–62, 2008.

[20] A. Lakshmikantha, N. Dukkipati, R. Srikant,
N. McKeown, and C.L. Beck. Performance analysis of
RCP, 2006. Technical Report, available at
http://www.ifp.uiuc.edu/˜lkshmknt/rcp.pdf.

[21] A. Lakshmikantha, R. Srikant, and C. Beck. Impact of
file arrivals and departures on buffer sizing in core
routers. In Proceedings of IEEE Infocom, 2008.

[22] L. Massoulie. Structural properties of proportional
fairness: stability and insensitivity. The Annals of
Applied Probability, 2007.

[23] G. Raina, D. Towsley, and D. Wischik. Part II:
Control theory for buffer sizing. ACM/SIGCOMM
Computer Communication Review, pages 79–82, July
2005.

[24] C. H. Tai, J. Zhu, and N. Dukkipati. Making large
scale deployment of RCP practical for real networks.
In IEEE INFOCOM Mini-conference, 2008.

[25] W. Whitt. On the heavy-traffic limit theorems for
GI/G/∞ queues. Advances in Applied Probability,
14:171–190, 1982.

[26] D. Wischik and N. McKeown. Part I: Buffer sizes for
core routers. ACM/SIGCOMM Computer
Communication Review, pages 75–78, July 2005.

ACM SIGCOMM Computer Communication Review 15 Volume 39, Number 1, January 2009

