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ABSTRACT
A broad spectrum of network measurement applications de-
mand passive multipoint measurements in which data from
multiple observation points has to be correlated. Exam-
ples are the passive measurement of one-way delay or the
observation of the path that a packet takes through a net-
work. Nevertheless, due to high data rates and the need for
fine granular measurements, the resource consumption for
passive measurements can be immense. Furthermore, the
resource consumption depends on the traffic in the network,
which usually is highly dynamic. Packet and flow-selection
methods provide a solution to reduce and control the re-
source consumption for passive measurements. In order to
apply such techniques to multipoint measurements the se-
lection processes need to be synchronized. Hash-based se-
lection is a deterministic packet selection based on a hash
function computed on selected parts of the packet content.
This selection decision is consistent throughout the network
and enables packet tracing and the measurement of delay
between network nodes. Because the selection is based on
deterministic function it can introduce bias which leads to
wrong estimation of traffic characteristics. In this paper we
define a set of quality criteria and select methods to inves-
tigate which hash function is most suitable for hash-based
packet selection. We analyze 23 non-cryptographic and 2
cryptographic hash functions. Experiments are performed
with real traffic traces from different networks. Based on
the results we recommend 2 fast hash functions which show
low bias and sample a representative subset of the popula-
tion.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; C.4
[Performance of Systems]: Measurement techniques

General Terms
Network Measurement

Keywords
sampling, hash function, multipoint measurements, packet
selection

1. INTRODUCTION
Network measurements play a vital role in operating and

developing today’s Internet. Beyond measuring of band-
width utilization and packet count at a single measurement

point there exists a variety of applications that require mul-
tipoint measurements ( [20], [34], [22], [5]). Service Providers
need to validate their delay guarantees from Service Level
Agreements. Network research has incentives to track where
packets are changed, reordered, lost, or delayed, for instance,
in error-prone environments like mobile adhoc networks.
Hash-based selection is a passive measurement technique
that enables multipoint measurements and packet tracing
( [8], [29]). In contrast to active one-way delay measure-
ments ( [23], [25], [16]) no additional traffic needs to be in-
troduced into the measured network and quality statements
can be made directly about the customer traffic. Hash-based
selection reduces the calculation effort because in contrast
to other passive multipoint measurements it does not corre-
late all packets from the measurement points. Instead, with
hash-based selection only a subset of packets at every mea-
surement point is selected and the real traffic characteristics
can be estimated.
Hash-based selection is realized by the following technique.
Parts of the packet content (header and payload) that are in-
variant between measurement nodes are extracted and used
as the hash input for a hash function. The hash function
with a digest length of N bits maps the hash input to a
value in the hash range R = [0..2N − 1]. The packet itself
is selected if the hash value falls into a predefined selection
range S ⊂ R. In order to obtain a certain sample size one
can adjust the selection range. The advantage of this tech-
nique is that the selection decision for each packet along its
path is the same, provided that the selected packet content
(hash input), hash function and selection range are the same
at the different measurement points. Because of this quality,
packets are consistently sampled along their path and can
be correlated for delay and loss measurements at a common
collector.

2. PROBLEM STATEMENT
Random selection techniques have the advantage to se-

lect an unbiased and representative subset of the popula-
tion. This is inevitable for proper traffic estimation and
for providing an accuracy statement from statistics [32].
Hash-based selection is a deterministic selection based on
the packet content. Therefore it is by definition very likely
that the selection is biased, i.e. packets with certain at-
tributes may be preferred selected than others. Bias results
in incorrect estimations about the real traffic properties and
prevents the application of standard statistics. For instance:
if packets with certain lengths are preferred in the selection,
a sound estimation of the packet size distribution is impos-
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sible. The same applies to all packet properties that might
have correlation with the packet length. The target qual-
ity is to emulate random packet selection with hash-based
packet selection, but it has to be evaluated if this is possible.
There are two settings in hash-based selection that can be
configured and that have an influence on the selection deci-
sion quality:

1. the packet content used as hash input
2. the hash function

2.1 Hash Input
In accordance with Duffield [8] we define the following re-

quired properties for the hash input.

1. Invariant between network nodes. Fields that change
between network nodes like Time To Live and IP Checksum
cannot be used for hash-based selection, because the selec-
tion decision would differ between the network nodes.
2. Highly variable between packets. In order to avoid
hash input collision (packets that are unequal but have the
same hash input) one should use highly variable packet header
fields. The higher the variability of the field, the higher the
probability that packets differ in this field. In case the choice
of the hash input results in too many collisions, bias is intro-
duced to the selection. Because packets with the same hash
input have the same hash value and selection decision, they
are not selected independently. All packets that have the
same hash input (and hence have common properties) will
either be under- or overrepresented in the selected subset.
Large collisions (large amount of packets with same hash in-
put) are of more concern than the same amount of packets
within multiple small collisions, because packets from dif-
ferent small collisions can have different selection decisions.
In [13] we investigate header fields from real traffic traces in
order to find a suitable hash input combination (see Sect.
3).

2.2 Hash Function
The choice of the hash function is of crucial importance to

avoid bias. Although the selection decision is based on the
hash function and the hash input, there are certain proper-
ties that a hash function should fulfill in order to be appli-
cable for hash-based selection. At first, the hash function
has to be fast, because a hash value is calculated for every
packet. Second, the hash functions should disperse hash val-
ues randomly over the hash range. Otherwise, hash inputs
which are similar will be mapped closely together, there-
fore packets that are similar will have a higher probability
to have the same selection decision which introduces bias
to the selection. The third criterion is that the selection
decision based on the hash function should be unbiased to
any packet attribute. As we will show later this relates to
the fourth criteria: a representative subset of the popula-
tion should be selected. In this paper we evaluate 25 hash
functions on their suitability for hash-based selection. The
evaluation is based on these four quality criteria upon which
we develop and implement a set of tests in order to assess if
hash-based selection can emulate random sampling.

3. STATE OF ART
Duffield and Grossglauser [8] were the first to introduce

the hash-based selection technique with the purpose of packet
tracing. Duffield evaluates a simple modulus hash function

using four different traces from a campus network. He uses
the chi-square independence test in order to analyze if there
is dependence between network address prefix and sampling
decision. Further, he investigates dependence between sin-
gle bits of the network address and sampling decision. There
has been no statistical sign for dependence if 40 input bytes
were used.
Molina [17] analyzes four hash functions (CRC32, MMH,
IPSX, BOB) for the purpose of hash-based selection. He
investigates the hash functions’ performances, hash value
collision probability and the ability to uniformly distribute
the hash values. He concludes that from the 4 evaluated
hash functions, BOB performs slightly better than the 2nd
placed CRC32 function in terms of performance and uni-
formity. Niccolini [20] and Raspall [26] use the MMH hash
function for hash-based selection because of its calculation
speed and uniform hash value distribution. The PSAMP [33]
working group advices the use of the BOB hash function for
hash-based selection; alternatively IPSX or CRC.
A general performance comparison of cryptographic hash
functions can be found at [7] and [31]. MD5 and SHA are
two of the fastest cryptographic hash functions. Neverthe-
less cryptographic hash functions are generally very compu-
tation expensive.
In [13] an entropy based approach is used to measure the
variability of each header field byte. An 8 byte hash input
configuration consisting of highly variable bytes is recom-
mended for the use with hash-based packet selection. It
could be shown that this configuration provides a compara-
ble amount of hash input collisions to a configuration where
the whole IP and transport header (except TTL and Check-
sum) are used as hash input and shows less collisions than
a 16 byte hash input configuration proposed by Molina [17].
A recent paper from Goldberg and Rexford [11] points out
security issues caused by hash-based selection. They prove
that non-cryptographic hash functions are vulnerable to at-
tacks because an adversary is able to craft packets that are
disproportionally selected. They propose the use of a keyed
pseudo random hash function, e.g. MD5 with a secret key
that is appended to the hash input.

4. APPROACH
We investigate a collection of 25 hash functions on their

suitability for hash-based selection. We define following
quality criteria for a hash function intended for hash-based
selection and how they can be tested:

1. Performance The hash value has to be calculated
on each packet which is captured at an observation point.
Hence, performance is very critical because an observation
point like a network router has a limited amount of process-
ing capacity. Usually only a small contingent of the nodes
resources are allocated for measurements and measurements
shall not influence the normal routing operation.

2. Non-linearity It is required that hash values are dis-
tributed randomly over the hash range. A linear hash func-
tion h has a linear dependency between hash input values
x and x+1 to hash values, e.g. h(x) + 1 = h(x + 1). This
may be exploited by an adversary who intentionally crafts
packets in order to influence the selected subset as shown
by Goldberg and Rexford [11]. Linearity is also undesired
because packets which only differ in some bits of the hash in-
put are mapped closely together and have the same selection
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Table 1: Hash Function Collection

Hash Fct. Invented By
Source 
Code Hash Fct. Invented By

Source 
Code

BOB Robert Jenkins [14] CRC32 [15]

OAAT Robert Jenkins [14] BRPHash Bruno Preuss [15]

Simple [18] PYHash [15]

SBOX [18] SDBM [19]

TWMX Thomas Wang [15] OCaml [19]

Hsieh Paul Hsieh [15] SML [19]

RSHash Robert Sedgewick [15] STL [19]

JSHash Justin Sobel [15] SHA [9]

BKDR B.Kernighan [15] MD5 [24]

DJBHash Daniel Bernstein [15] MMH [12]

NDJBHash Daniel BErnstein [15] FNV32 Fowler Noll [21]

DEKHash Donald E.Knuth [15] CS Carsten Schmoll [28]

APHash Arash Partow [15]

decision which introduces bias. The avalanche criterion is
used to assess the ability to distribute hash values randomly
over the hash range. Avalanche is the property that with
the change of one input bit all output bits change with a
probability of 50%. The closer this avalanche criterion is
fulfilled the more random the hash values. Note that non-
linearity does not necessarily mean that the hash function
is secure in an adversarial setting, see [11] for details.

3. Unbiasedness Bias is introduced into the estimation if
the hash function favors any packets or bitstreams to others
in the selection decision. Duffield [8] uses the chi-square in-
dependence test to analyze if the sampling decision caused
by the hash function is dependent to the network prefix for
one linear hash function. We follow this approach and also
use the chi-square test.

4. Representativeness of the selected subset The dis-
tribution of packet attributes in the sampled subset have to
be the same as in the population in order to ensure good
traffic characteristic estimation. In order to compare the
proportions of packet attributes in the sampled subset and
the population we considered the use of the goodness-of-fit
test. Claffy [6] used the goodness-of-fit test to prove that
random selection techniques sample a representative subset.
Nevertheless as we later point in our case the chi-square
independence test is stronger than the goodness-of-fit test
and does not only evaluate biasedness but also representa-
tiveness of the selected subset.

5. COLLECTION OF HASH FUNCTIONS
We selected a collection of 23 non-cryptographic hash

functions. All hash functions have a 32 bit digest (hash
value) and a variable hash input length. Exemplary two
cryptographic hash functions - SHA1 and MD5 - were added
to the collection as well. The hash values of SHA (128 bits)
and MD5 (160 bits) were trimmed to 32 bits by adding each
32 bit subblock. The functions were available at various on-
line sources. An overview of the Collection is shown in Tab.
1.
In our work we focus on the non-cryptographic hash func-
tions. As already shown in [11] non-cryptographic hash
functions imply security impairments in an adversarial set-
ting, where an adversary tries to influence the selection de-
cision. The cryptographic MD5 and SHA hash function are
proven to be robust for the adversarial setting and shall be
compared to the other functions in order to assess if they
show better quality for other criteria as well.
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Figure 1: Hash Functions Performance

6. EVALUATION OF HASH FUNCTIONS
In this section we compare the hash functions in accor-

dance to the quality criteria defined in Sect. 4.

6.1 Performance
The performance of the 25 hash functions is measured

by an evaluation tool written in C++. The tool generates
random artificial packets of definable length upon which all
hash functions are applied. An average of 1 million repeated
calculations is measured. The tool is run on a Dell Inspirion
PC (2.8 GHz, 2048 KB cache, 1 GB RAM) with Kubuntu
Feisty OS. Fig. 1 shows the measurement results for differ-
ent packet lengths. Because of the amount of hash functions
both subfigures only show a condensed view on the perfor-
mance of both hash function groups. From Fig. 1(b) one
can observe that the non-cryptographic hash functions have
a linear increase of computation time in the range of 66%
(SBOX) to 1260% (SML) when the hash input length is in-
creased from 4 to 32 bytes. The computation time of SHA
and MD5 are more or less constant with an increase of 0%
and 5%. Fig. 1(a) shows the contrast in performance be-
tween the cryptographic hash functions (SHA, MD5) and
non-cryptographic hash functions. For small packet lengths
the average calculation time of all non-cryptographic hash
functions (excluding CRC32) is 33 (MD5) and 55 (SHA)
times faster than the cryptographic functions. With a 32
byte hash input length this discrepancy narrows with an av-
erage difference of 7 (MD5) and 12 (SHA) times the calcula-
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Figure 2: Avalanche with a 2 byte Hash Input

tion time. CRC32 is not depicted in these diagrams because
it is very slow with about 200µs. The majority of hash func-
tions have a calculation time in the range of 0.05 − 0.12µs
for a 12 byte hash input length. These results show that
non-cryptographic hash functions are faster than SHA and
MD5. For non-cryptographic hash functions one may con-
sider to calculate the function on the hash values again for
this may improve the hash value dispersion.
The evaluation of the different algorithm’s performance is
software based on a standard PC platform. Implementation
on network card processors or FPGAs may show a different
ordering of the performance results, since the algorithms
have different potential for improvement by hardware par-
allelism on these platforms. Especially the CRC32 function
can be efficiently designed with bit shifting registers.

6.2 Non-Linearity
The non-linearity of a hash function is with the avalanche

criterion. The avalanche criterion is proposed by [10] and [4]
to measure randomness of hash output values. Avalanche is
the property that with the change of one input bit all out-
put bits change with a probability of 50%. This implies that
hash inputs that only differ in one bit disperse randomly. A
C# implementation of the test is available at [18] which we
adopted to C++ for the hash function collection. We con-
ducted the avalanche test with different hash input lengths
(2-16 bytes). Fig.2 illustrates three exemplary avalanche re-
sults of the BKDR, BOB and CRC32 hash functions with
hash input length of two bytes. In the figures the 32 output
bits are shown in the columns whereas the rows depict the

Table 2: Avalanche Test Results
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two bytes of input. The numbers represent the probability
of a change in that certain output bit caused by the input
bit. Dark background colors and white font color represent
poor avalanche whereas white background and dark num-
bers represent good avalanche. For the BKDR hash with
a 2 byte hash input in Fig. 2(a) one can observe that the
change of the second input bit always leads to a change of
the second output bit, whereas the first output bit is not
affected. The BKDR 2-byte example also demonstrates one
common shortcoming of some analyzed hash functions: be-
cause the hash input is only 2 bytes long, the input infor-
mation is not sufficient to affect all 32 output bits. The 2
least significant bytes are not changed at all. With increas-
ing hash input length those functions show better avalanche.
Fig. 2(b) shows the linear property of the CRC32 Hash Func-
tion. The BOB hash function has nearly perfect avalanche.
All single input bits cause a change of all output bits with
a probability close to 50%. Categorized results for all 25
hash functions are shown in Table 2. Four hash functions
(CRC32, DEKHash, BRPHash, APHash) have a linear de-
pendency between hash input and hash value. These func-
tion are very vulnerable to bias and security attacks.

6.3 Unbiasedness
The unbiasedness of the selection decision can be tested by

the chi-square independence test. The chi-square indepen-
dence test [3] statistically evaluates the dependency between
two categorical variables. We will use this test to evalu-
ate if the sampling decision X = {x1 = ”selected”, x2 =
”notselected”} is independent to a packet attribute (e.g.
packet length) Y= {y1, .., yL} with L possible values, where
yi is a realization of the packet attribute (e.g. packet length=5).
The hypotheses to test are:

H0: Selection decision (X) and packet attribute (Y) are in-
dependent
H1: Selection decision (X) and packet attribute (Y) are de-
pendent

The test statistic S is the sum of deviations between ex-
pected (hij) and observed (hij) simultaneous frequencies of
xi and yi.

SI =

2∑
i=1

L∑
j=1

hij − hij

hij

(1)

The error α to incorrectly reject H0 has to be defined prior
to the test. Usually α is set to be 5%, i.e. although the
variables X and Y are truly independent the test rejects H0
with a probability of 5%. Assuming that selection decision
and packet attribute are independent S is asymptotically X2

distributed with (2−1)(L−1) = (L−1) degrees of freedom.
The H0 hypotheses is rejected if S is above the critical X2

value Xcrit((L− 1);α).
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6.4 Representativeness
The representativeness of the selected subset is given if

the subset includes the same relative frequencies of packet
attributes as there are in the population. The chi-square
goodness-of-fit test [3] is used to evaluate if observed fre-
quencies follow a specified distribution. The hypotheses to
test are:

H0: The packet attribute distribution in the selected subset
and the population are equal
H1: The packet attribute distribution in the selected subset
and the population are not equal

The test statistic SD is the sum of deviations between the
fraction of packet attributes hi in the population and the
observed fraction hi in the sampled subset, where i=(1..L)
denotes the different realizations of the attribute.

SD =

L∑
i=1

hi − hi

hi

(2)

The test statistic SD is X2 distributed with L-1 degrees of
freedom under the assumption that both attribute distribu-
tions are equal. If the test statistic SD is above Xcrit(L −
1;α) the distributions in the sampled subset and the popu-
lation are different.

Derivation of Chi-Square Goodness-of-Fit Test from In-
dependence Test.

One has the notion that the test statements of the inde-
pendence and goodness-of-fit test are causally related. If
the sampling decision is unbiased to a packet attribute, the
selected subset should be representative as well. This shall
be derived in short here.
The test statistic SI of the chi-square independence test be-
tween any packet attribute and the sampling decision can
also be written as (cf. Eq. 1):

SI =

L∑
i=1

hi1 − hi1

hi1︸ ︷︷ ︸
Term 1

+

L∑
i=1

hi2 − hi1

hi2︸ ︷︷ ︸
Term 2

(3)

Hence term 1 in Eq. 3 equals the test statistic SD from the
chi-square distribution test (Eq. 2). One can note that the
independence test statistic SI is larger than SD because it
includes the additional summands of term 2. Because both
tests have equal critical X2 values, more independence tests
are rejected than goodness-of-fit tests.
For our evaluation one can note that an unbiased test re-
sult will always lead to a representative subset, but a passed
goodness-of-fit test does not mean that the unbiasedness
test passes as well. As for this work only hash functions
that comply with both criteria are of interest, only the inde-
pendence test is used to verify unbiasedness and representa-
tiveness.

6.5 Independence Test

6.5.1 Test Setup

I. Analyzed Traces.
In order to assess the quality of the hash functions we con-
duct multiple chi-square independence tests on real traffic

traces. For the tests we use two (in [13] prior screened) real
traffic trace groups. The Twente and FH Salzburg traces
can be found at the MOME database [2]. We use 51 FH
Salzburg traces that are captured at an WAN Access Net-
work on a student campus and 100 Twente traces that are
captured at an aggregated uplink of an ADSL access net-
work. The FH Salzburg traces comprise of mostly http traf-
fic whereas the Twente traces include a variety of applica-
tions with only 2% http traffic and applications each not
composing more than 1% of the traffic. Both traces include
the IP and Transport Layer Header. We have specially cho-
sen these two trace groups because they include very few
identical packets (both about 0.05%). Nevertheless, in [13]
we have shown that the collisions for the Twente traces are
more condensed, i.e. more packets are included in large col-
lisions, whereas for the FH Salzburg traces more smaller
collisions are observed. As pointed out in Sect. 2 identical
packets cause bias that cannot be reduced by the underlying
hash function.

II. Multiple Independence Tests.
The independence test is based on 51 FH Salzburg and 100
Twente traces. We will trim each of the FH Salzburg trace
files to 200.000 packets and the Twente traces to 1 Mio pack-
ets. For each trace file a separate independence tests is con-
ducted which leads to multiple independence tests for each
trace group. The reason for using separate independence
test are the following: 1) measurement intervals are simu-
lated and 2) the effect on the bias caused by packets with
the same hash input is mitigated as the hash input collisions
are kept small.
The problem with multiple chi-square tests is that every
test inherits an error. As earlier noted, we will discard H0
in α (e.g. 5%) of the individual tests although there is no
dependency between the variables. We are not interested
in individual tests that falsely reject H0, but in tests that
show a true dependency. A common approach when multi-
ple statistical tests are performed is the Dunn-Sidak correc-
tion [27] [30]. Under the assumption of H0, the probability
of falsely rejecting at least one out of n independent indi-
vidual tests, each of level αind, is 1 − (1 − αind)n. For the
correction we have to define a global test, that restricts the
combined error of all individual tests

global H0: There is no dependency for all test.
global H1: There is dependency for at least one test.

We set the global error αglobal to be 5%, i.e. if there is no
dependency global H0 is only rejected with a 5% probability.
In order to achieve a global error of 5% we have to adjust
the individual test error αind.

αind = 1− (1− αglobal)
1
n (4)

Because the individual test error αind is lowered, the critical
X2

crit for the global test is above the individual tests critical
values.

III. Hash Input Configuration.
As the hash input we will use the 8 high entropy bytes that
we proposed in [13]. These 8 bytes are the IP identification
field and 6 bytes depending on the transport protocol: TCP
(Checksum, 2 LSB of Sequence and Acknowledgment Num-
ber) UDP (Checksum, Source Port, LSB Destination Port,
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LSB Length) ICMP (Checksum, Bytes 12,13,18,19). The
selection range includes a 10% slice of the hash range. We
do not use a secret key in the evaluation, therefore all hash
functions are evaluated in an unkeyed version. It is part
of future work which type of concatenation (append, XOR,
etc.) of the secret key is most useful.

IV. Tested Attributes.
The chi square independence tests are conducted for three
different packet attributes:

I. packet length
II. transport protocol
III. byte value

6.5.2 Test Results

I. Independence of Sampling Decision and Packet Length.

The packets are categorized into 7 length groups as in [1]:
0-44 Bytes, 45-90 Bytes, 91-180 Bytes, 181-260 Bytes, 261-
576 Bytes, 577-1120 Bytes and longer than 1120 Bytes. It
is evaluated if packets within a certain length category have
a higher sampling probability as in another category.

The Box-Whisker-Plots for the hash function collection is
shown in Fig. 3. The Box-Whiskers-Plots depict the min-
imum, 5% quantil, median, 95% quantil and maximum of
the test statistic S for the 51 FH Salzburg and 100 Twente
traces. The 95% quantil is chosen to depict the amount of
tests that are expected to accept H0 under independence.
On the very left the distribution of the test statistic S for
random probabilistic sampling (p=10%) is depicted as refer-
ence. The lower horizontal line represents the critical value
X2

crit = 12.6. All tests that have a test statistic S above
this value reject H0. It is noticeable that the majority of
hash functions perform very well; their distribution of S is
not obviously different to probabilistic sampling.

Dunn-Sidak The 95% quantil of the Box-Whisker-Plot
shows if more or less than 5% of the test reject H0. The
tests based on random probabilistic sampling reject H0 3
times for FH Salzburg and one time for Twente traces al-
though dependency can be excluded by definition. Hence we
need to adjust the error α to obtain only tests that show true
dependency. Applying the Dunn-Sidak correction (Eq. 4)
we obtain a global critical values for FH Salzburg (51 tests)
X2

crit = 22.4 and for Twente (100 tests) X2
crit = 24.0. The

upper horizontal lines in Fig. 3 show the adjusted global
X2

crit values. Each hash function that has one rejected test
(S above global X2

crit) is truly biased at least for this trace.
For example there is only one test of the AP hash function
based on the FH Salzburg traces that is above the individual
critical value. Nevertheless this test shows true dependency
because its test statistic is even above the global critical
value.
It is noticeable that the results for the Twente traces are
worse than the one of FH Salzburg. Especially hash func-
tions that indicate biasedness for the FH Salzburg traces
show significant dependency for the Twente traces (e.g. AP,
BKDR, BRP). There are hash functions that did not show
any dependency for the FH Salzburg traces but show strong
dependency for the Twente traces (SDBM, Simple, SML).

There are 3 causes that may explain this difference. 1) The
traffic traces include different traffic 2) the measurement in-
terval for the Twente traces is larger and hence more hash
input collisions are included 3) the hash input collisions are
larger for Twente than for FH Salzburg.
The number of rejections for individual and global tests are
shown in Table 3. In the table all hash functions that pro-
duce an unbiased subset in all tests for the 8 byte hash input
configuration are marked: BOB, MD5, CRC32, OAAT, RS,
SHA and TWMX. The SBOX, Hsieh and FNV32 hash func-
tion have one global rejected test.

II. Independence of Sampling Decision and Protocol.
Only three transport protocols are considered for the chi-
square independence test; others are filtered out: TCP, UDP
and ICMP. We will conduct the independence test in order
to evaluate if there is any dependency between the sampling
decision and these 3 transport protocols. The results are
presented in the Box-Whisker-Plots in Fig. 4. The lower
horizontal line represents the critical X2 above which all
individual tests reject H0. The upper horizontal line rep-
resents the Dunn-Sidak adjusted global critical X2 value.
All tests that have a test statistic S above this value show
true dependency between sampling decision and protocol for
this trace file. The number of rejections for individual and
global tests for all hash functions is shown in Tab. 4. Again
it is obvious that there is a difference of the selection deci-
sion based on the Twente and FH Salzburg traces for the
hash functions that already failed in the length indepen-
dence test. Nevertheless there are 10 hash functions that
do not indicate any dependency between sampling decision
and transport protocol: BOB, CRC32, FNV, Hsieh, MD5,
OAAT, RS, SBOX, SHA and TWMX.

III. Independence of Sampling Decision and Byte Value.

Hash functions are indifferent to the conceptional model of
packet header fields, they calculate on bits and bytes. There-
fore it is evaluated if any byte that is used as hash input has
an influence on the sampling decision. For instance if a cer-
tain value in the hash input byte number 2 is favored to
other values in byte number 2.
For each byte of the hash input an individual chi-square in-
dependence test is conducted. Hence, there are 8 tests for
each trace and hash function. This is a total of 408 tests for
FH Salzburg and 800 for the Twente trace group. Because
for some bytes not all possible 256 values are occupied, the
degrees of freedom for the tests differ. The critical X2 val-
ues are calculated with as many degrees of freedom as there
are in the specific trace for this byte. The test statistic S
is divided by this critical X2 value in order to be able to
compare results for different chi-square tests with different
degrees of freedom. The obtained metric is the relative test
statistic R on which the test decision can be based. If R is
above 1 the tests rejects H0:

R =
S

X2
critical

→ if R

{
≤ 1 H0 not rejected

> 1 H0 rejected

An exemplary graphical result for the DJB hash function
based on the FH Salzburg traces is shown in Fig. 5. The
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Figure 3: Distribution of Test Statistic S for Independence Test on Length
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Figure 4: Distribution of Test Statistic S for Independence Test Protocol

Table 3: Individual and Global Rejections of Independence Test Packet Length
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Table 6: Summarized Test Result
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Figure 5: Independence Test on Byte for DJB Hash
Function for FH Salzburg Group

tests that show a relative test statistic R above 1 reject
the global H0 and statistically prove dependency between
a byte value and the sampling decision. It is observable
that the sampling decision of the DJB hash function based
is dependent on the first 4 bytes of the hash input, because
at least one of the 51 tests for these bytes is rejected. For
the last 4 bytes a dependence cannot be proven.
7 hash functions (BOB, Hsieh, MD5, RS, SBOX, TWMX)
show no dependency between any hash input byte and the
sampling decision. With 1 rejected test for one byte the
CRC32, FNV32 and SHA perform reasonably well.

7. CONCLUSION
We analyzed a collection of 25 hash functions on their suit-

ability for hash-based selection. The hash functions were
evaluated on 4 criteria: performance, non-linearity, unbi-
asedness and representativeness. The evaluation of unbi-
asedness and representativeness were based on real traffic
traces. Categorial Results are shown in Tab. 6. Hash fun-
cions on the left are most suitable for hash-based packet
selection because they satisfy the quality criteria best.

Cryptographic Hash Function Both cryptographic hash
functions SHA and MD5 show perfect avalanche. The MD5
hash function has no rejected independence test whereas
SHA shows dependency between sampling decision and the
byte value because of one rejected individual test. This may
be caused by the trimming to 32bit output values. As shown
in the performance evaluation both cryptographic hash func-
tions imply heavy processing time compared to their non-
cryptographic counterparts. For the short 8 byte hash in-
put configuration SHA is 35 and MD5 20 times slower than
BOB or OAAT. Especially for low-resource measurement
nodes, MD5 and SHA cannot be recommended because the
hash needs to be calculated over each hash packet. It has

to be evaluated if hardware based approaches may narrow
the performance differences to the non-cryptographic hash
functions. Nevertheless it has to be clearly stated, that in an
adversarial setting only a cryptographic hash function can
be applied to ensure proper sampling.

Emulation of Random Selection Two properties of ran-
dom selection are important for accurate measurements: un-
biasedness and representativeness. We have shown that the
tests for biasedness of the selection decision and the repre-
sentativeness of the selected subset is causal related and can
be analyzed with the chi-square independence test. We have
shown that BOB, MD5, OAAT, RS and TWMX hash func-
tion are able to select an unbiased and representative sample
based on our recommended 8 byte configuration. Neverthe-
less hash-based selection is not a random selection, because
it is deterministically based on the packet content. Hence
results are trace dependent and we have to be aware that
the selection decision of identical packets will be cause bias.

Measurement Interval and Input Collision The results
have also shown that there is a difference between the re-
sults for the two trace groups. As already pointed out there
are two reasons for this difference. We used larger measure-
ment intervals for the Twente traces and the input collision
are more condensed (and larger) for the Twente traces. In
order to diminish this effect one has to keep measurement
intervals short and periodically change the selection range
or secret key in order to ensure different sampling decisions
between packets with the same hash input. This reconfigu-
ration needs to be synchronized between the measurement
nodes.

Recommended Hash Functions The BOB and OAAT
hash function master all the tests (performance, avalanche,
chi-square tests) and are strongly recommended for hash-
based selection. Other well performing hash-functions are
SBOX, Hsieh, TWMX, RS, SHA and MD5. The Hsieh
function ( 0.05 − 0.10µs) is the fastest hash function of
these 7, whereas SHA is the slowest (2.5µs). BOB, OAAT
are recommended for low-resource measurement nodes in
a non-adversarial setting. In order to provide some addi-
tional security it advised to use a secret key with the non-
cryptographic hash functions as well, although this does not
make the selection secure.
Our analysis confirms the recommendation by the PSAMP
group to use BOB and provides further alternatives.

8. FUTURE WORK
In order to validate the results it is necessary to use more

traces. Especially IPv6 traces are interesting in order to
verify the selection decision quality based on the hash input
of IPv6 traces. Unfortunately it is difficult to obtain IPv6
traces with more packet information than the IP header.
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Figure 6: Performance of Recommended Hash Func-
tions

In our paper we evaluated mostly non-cryptographic hash
functions. It has to be assessed if there are cryptographic
hash functions. A thorough analysis of which characteristics
of cryptographic hash functions are required for hash-based
packet selection can lead to cryptographic hash functions
that are faster than MD5 and SHA but still provide efficient
security.
Packet ID generation is an adjacent field to hash-based se-
lection in multipoint measurements. Each packet travers-
ing a measurement point will be assigned a packet ID and
timestamp which are exported to a multipoint collector. Ac-
cording to this packet ID the packets observations can be
correlated for packet tracing and delay measurements. This
packet ID is assigned to each packet after the selection pro-
cess (e.g. after hash-based selection). In [8] [17] [20] it is
proposed to use different hash functions (or a different key
respectively initial value) for packet ID generation and hash-
based selection. A hash function for packet ID generation
requires different qualities than the one used for hash-based
selection, essentially only hash functions with a low colli-
sion probability are useful. Packet ID collisions are critical,
because the trajectories of duplicate packet IDs can be mis-
interpreted as a trace from single packets which leads to
wrong delay measurement results. In future we will analyze
our hash function collection on their suitability for packet
ID generation in terms of collision probability. Further we
will evaluate under which circumstances the hash-based se-
lection hash value can be used as packet ID.
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