A Scalable, Commodity Data Center Network Architecture

By: 
Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat
Appears in: 
CCR October 2008

Today’s data centers may contain tens of thousands of computers with significant aggregate bandwidth requirements. The network architecture typically consists of a tree of routing and switching elements with progressively more specialized and expensive equipment moving up the network hierarchy. Unfortunately, even when deploying the highest-end IP switches/routers, resulting topologies may only support 50% of the aggregate bandwidth available at the edge of the network, while still incurring tremendous cost. Nonuniform bandwidth among data center nodes complicates application design and limits overall system performance.

In this paper, we show how to leverage largely commodity Ethernet switches to support the full aggregate bandwidth of clusters consisting of tens of thousands of elements. Similar to how clusters of commodity computers have largely replaced more specialized SMPs and MPPs, we argue that appropriately architected and interconnected commodity switches may deliver more performance at less cost than available from today’s higher-end solutions. Our approach requires no modifications to the end host network interface, operating system, or applications; critically, it is fully backward compatible with Ethernet, IP, and TCP.