Jitendra Padhye

Congestion Control for Large-Scale RDMA Deployments

By: 
Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, Ming Zhang
Appears in: 
CCR August 2015

Modern datacenter applications demand high throughput (40Gbps) and ultra-low latency (< 10 us per hop) from the network, with low CPU overhead. Standard TCP/IP stacks cannot meet these requirements, but Remote Direct Memory Access (RDMA) can. On IP-routed datacenter networks, RDMA is deployed using RoCEv2 protocol, which relies on Priority-based Flow Control (PFC) to enable a drop-free network. However, PFC can lead to poor application performance due to problems like head-of-line blocking and unfairness.

Duet: cloud scale load balancing with hardware and software

By: 
Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Padhye, Lihua Yuan, Ming Zhang
Appears in: 
CCR August 2014

Load balancing is a foundational function of datacenter infrastructures and is critical to the performance of online services hosted in datacenters. As the demand for cloud services grows, expensive and hard-to-scale dedicated hardware load balancers are being replaced with software load balancers that scale using a distributed data plane that runs on commodity servers.

Data Center TCP (DCTCP)

By: 
Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan
Appears in: 
CCR October 2010

Cloud data centers host diverse applications, mixing workloads that require small predictable latency with others requiring large sustained throughput. In this environment, today’s state-of-the-art TCP protocol falls short. We present measurements of a 6000 server production cluster and reveal impairments that lead to high application latencies, rooted in TCP’s demands on the limited buffer space available in data center switches. For example, bandwidth hungry “background” flows build up queues at the switches, and thus impact the performance of latency sensitive “foreground” traffic.

Detailed Diagnosis in Enterprise Networks

By: 
Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal, Jitendra Padhye, and Paramvir Bahl
Appears in: 
CCR October 2009

By studying trouble tickets from small enterprise networks, we conclude that their operators need detailed fault diagnosis. That is, the diagnostic system should be able to diagnose not only generic faults (e.g., performance-related) but also application specific faults (e.g., error codes). It should also identify culprits at a fine granularity such as a process or firewall configuration. We build a system, called NetMedic, that enables detailed diagnosis by harnessing the rich information exposed by modern operating systems and applications.

Syndicate content