Network middleboxes must offer high availability, with automatic failover when a device fails. Achieving high availability is challenging because failover must correctly restore lost state (e.g., activity logs, port mappings) but must do so quickly (e.g., in less than typical transport timeout values to minimize disruption to applications) and with little overhead to failure-free operation (e.g., additional per-packet latencies of 10-100s of us). No existing middlebox design provides failover that is correct, fast to recover, and imposes little increased latency on failure-free operations.
A longstanding problem with the Internet is that it is vulnerable to outages, black holes, hijacking and denial of service. Although architectural solutions have been proposed to address many of these issues, they have had difficulty being adopted due to the need for widespread adoption before most users would see any benefit. This is especially relevant as the Internet is increasingly used for applications where correct and continuous operation is essential.
Privacy—the protection of information from unauthorized disclosure is increasingly scarce on the Internet. The lack of privacy is particularly true for popular peer-to-peer data sharing applications such as BitTorrent where user behavior is easily monitored by third parties. Anonymizing overlays such as Tor and Freenet can improve user privacy, but only at a cost of substantially reduced performance. Most users are caught in the middle, unwilling to sacrifice either privacy or performance.
As peer-to-peer (P2P) emerges as a major paradigm for scalable network application design, it also exposes significant new challenges in achieving efficient and fair utilization of Internet network resources. Being largely network-oblivious, many P2P applications may lead to inefficient network resource usage and/or low application performance. In this paper, we propose a simple architecture called P4P to allow for more effective cooperative traffic control between applications and network providers.